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Abstract. The human lateral geniculate body (LGB) with its six sickle shaped
layers (lam) represents the principal thalamic relay nucleus for the visual system.
Cytoarchitectonic analysis serves as the groundtruth for multimodal approaches
and studies exploring its function. This technique, however, requires experienced
knowledge about human neuroanatomy and is costly in terms of time. Here we
mapped the six layers of the LGB manually in serial, histological sections of the
BigBrain, a high-resolution model of the human brain, whereby their extent was
manually labeled in every 30th section in both hemispheres. These maps were
then used to train a deep learning algorithm in order to predict the borders on
sections in-between these sections. These delineations needed to be performed
in 1 μm scans of the tissue sections, for which no exact cross-section alignment
is available. Due to the size and number of analyzed sections, this requires to
employ high-performance computing. Based on the serial section delineations,
high-resolution 3D reconstruction was performed at 20 μm isotropic resolution
of the BigBrain model. The 3D reconstruction shows the shape of the human
LGB and its sublayers for the first time at cellular precision. It represents a use
case to study other complex structures, to visualize their shape and relationship to
neighboring structures. Finally, our results could provide reference data of theLGB
for modeling and simulation to investigate the dynamics of signal transduction in
the visual system.

Keywords: Lateral geniculate body (LGB) · Corpus geniculatum laterale
(CGL) · BigBrain · Deep learning · 3D reconstruction · Cytoarchitecture

1 Introduction

The lateral geniculate body (LGB, lat. Corpus geniculatum laterale, from now on LGB)
plays a key role in visual perception. Together with the medial geniculate body, which
is involved in auditive processing, both nuclei constitute the metathalamus. The LGB is
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located on the ventral surface of the brain. It mainly receives connections from the retina
via the optic tract, but also from layer 6 of the visual cortex and the reticular nucleus
of the thalamus [1]. The most prominent efferent projections reach the primary visual
cortex, i.e. Brodmann’s area 17 (or area V1, or hOc1 [2]; via the optic radiation (Fig. 1
top image) [1]. The human LGB consists of six layers. The two most ventrally located
layers (layers 1 and 2) consist of larger neurons and are known as magnocellular, while
layers 3 to 6 are parvocellular layers (Fig. 1 bottom image). Koniocellular neurons are
located in between those laminae.

Fig. 1. The human visual pathway (top
image). The location of the lateral geniculate
body (LGB) is marked by the black rectangle.
Six layers of the LGB (bottom image) describ-
ing contralateral projections depicted in green
and ipsilateral projections in red. Createdwith
BioRender.com (Color figure online)

Layers 2, 3 and 5 receive fibers from
the ipsilateral eye, whereas layers 1, 4 and 6
receive fibers from the contralateral eye [3].
I.e., each layer receives information from
one eye only. Later on, the information will
be merged to be processed and interpreted
as a binocular image in the visual cortex [4].
Approximately 80% of the retinal informa-
tion derive from midget ganglion cells and
are transferred to the parvocellular neurons
in the LGB in layers 3 to 6. These small
neurons are specialized in object and detail
recognition due to their ability of generating
a high spatial resolution and red-green color
vision [4]. Midget cells are characterized
as small, color-sensitive slow adapting cells
from the retina, contrary to parasol cells.
Retinal parasol cells send impulses to the
bigger magnocellular layers 1 and 2, which
are functional for time resolution and hence
for the perception of position and movement
[5]. Non-Midget-non-Parasol ganglion cells
from the retina project to koniocellular neu-
rons of the LGB, which further project to the
primary visual cortex, similarly to the parvo-
and magnocellular systems. Since the LGB
transfers retinal information directly to the
primary visual cortex via the optic radiation,
it is also defined as first-order relay [1]. The
koniocellular neurons most probably play a
role in color perception [4]. The middle part
of the LGB in coronal sections is called the
hilum, and the taperings at the medial and
lateral ends of the LGB are called the medial
and lateral horn of the LGB, respectively [6].

Lesions in the LGB can affect the function of the visual pathway. For example,
patients suffering frommultiple sclerosis or Alzheimer’s disease show a general volume
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loss of the LGB, indicating in the latter case a significant relation between degeneration
of the LGB and amyloid-β pathology [7, 8]. After loss of visual experience due to an
injury of the primary visual cortex but with an intact LGB, certain visual information
processing still exists. This phenomenon discovered by functional magnetic resonance
imaging (fMRI) is called blindsight [9].

This work aims to map the LGB and its layers at microscopical resolution, to provide
reference data for studies targeting the LGB in the living human brain, to develop a use
case enabling the combination of expert annotations based on cytoarchitectonic criteria
in a subset of sections with deep learning in order to increase the number of delineated
sections. A 3D reconstruction of the human LGB in both hemispheres of the BigBrain
dataset was computed and visualized [10].

2 Materials and Methods

2.1 Histology

TheBigBrain (65-year-oldmale) comes from the body donor program of theAnatomical
Institute of Düsseldorf in accordance to legal and ethical requirements. Prior to histo-
logical processing MRI images were taken (1.5 T, Siemens Medical Systems GmbH,
Erlangen, Germany) in order to provide a reference volume for subsequent image regis-
tration. Histological processing was previously described in detail [10, 11]. In short, the
brain was fixed in 4% buffered formalin, embedded in paraffin and cut in coronal plane,
each Sect. 20 μm thick. Every section – of total 7404 – was mounted and silver stained
for cell bodies. The sections were digitized using a TISSUEscope™ LE120 Scanner
(Huron Digital Pathology) [10]. The spatial resolution of the images is 1 μm in-plane,
the average size of the images is 10 GByte per section.

2.2 Manual Analysis and Reference Mapping of Histological Sections

High-resolution images were analyzed and manually delineated using SectionTracer, an
online tool written in JavaScript [12]. Borders of the LGB and its six layers were traced
in 16 sections per hemisphere, i.e. every 30th image at a distance of 600 μm.

The human LGB is surrounded by white matter, i.e. fiber tracts, and could therefore
be clearly distinguished from its neighboring structures: the thalamus was found dorso-
medially from the LGBwhile themedial geniculate bodywas locatedmedially. At rostral
levels the LGB was completely surrounded by white matter.

The borders of the six layers of the LGB were identified based on differences in the
cytoarchitecture (Fig. 2). Magno- and parvocellular layers were mainly distinguished
according to their cell-size and -density. The pale koniocellular neurons served as main
indicators for the borders between the different layers of theLGB.Wherever these criteria
were not sufficient, i.e. where two parvocellular layers were not separated by a konio-
cellular lamina, cytoarchitectonic criteria such as size, shape, density and distribution of
neurons were applied. Borders were drawn where the cytoarchitectonic pattern changed.
Layers were numbered according to their position, starting from the most ventral layer
1 at the brain surface, increasing to the uppermost dorsal layer 6.
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Fig. 2. Shape and borders of the six layers (labeled by different colors and numbers) of the human
lateral geniculate body (LGB) on coronal sections.Upper row shows a comparison betweenmanual
expert mapping (a) and the prediction of the CNN (b). The location of the LGB on the coronal
section is shown in (c). One caudal (d) and one rostral section (e) indicate different shapes of the
LGB at different levels of sectioning. Scale bars: a–b, c–e 1 mm, c 20 mm. Scalebar magnification
in a: 50 μm.

The volumes of the LGB and its layers were measured using Cavalieri’s principle.
A shrinkage factor of 1,931 was used for calculations in order to consider the shrinkage
occurring during histological processing, the fixation, respectively [13].

The layers were then 3D reconstructed and transferred to the BigBrain space, which
has a spatial resolution of 20 μm isotropic [12]. Results were visualized using the
software ParaView [14, 15].

2.3 Training of the Deep-Learning Algorithm to Predict Missing Delineations

A convolutional neural network (CNN) was trained to classify each image pixel accord-
ing to each lamina of the LGB. Network architecture and training procedure were
based on Schiffer et al. [16], as they have been used successfully to aid mapping of
cytoarchitectonic areas in several cortical brain regions [17–20].

The workflow uses a U-shape architecture for brain area segmentation with two
encoder branches capturing the input data at different spatial scales. Training and pre-
diction was controlled by the web-based interface of the tool, and performed remotely on
the supercomputer JURECA [21] at Jülich Supercomputing Centre (JSC). The training
time on the HPC system was around 70 min.
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After training, the CNN was applied to automatically classify layers of LGB in
sectionswithout annotations.Automatically created annotationswere quality-checked to
excludemisclassified sections. Annotationswere then non-linearly transformed [22] into
the 3D reconstructed BigBrain space [10]. Previously excluded sections were replaced
by interpolation [23]. Finally, the marching cubes algorithm [24] was applied to extract
a surface mesh for each layer of LGB. This 3D reconstruction step is not part of the
tool provided by [16], but it follows directly the experimental protocol for the BigBrain
dataset described therein.

3 Results

3.1 Cytoarchitectonic Mapping Based on Expert Annotations and Deep Learning

The analysis of the LGB allowed to identify six layers, partially different in shape and
size (Fig. 2). The two ventral layers contained magnocellular neurons of triangular and
multiform shapes and differed significantly in the cytoarchitecture from the parvocellular
layers 3–6. Layers 1 and 2 were thinner and more elongated; contained round and oval
shaped neurons. Layers 3 and 6 were most prominent and were reached over a larger
distance than the other two layers of the parvocellular part. Layer 5 was the shortest and
least developed layer with respect to its mediolateral extent. On most sections, the layers
were separated by a white koniocellular line, characterized by a low cell density. On a
few sections, layers 1 and 4 as well as 4 and 6 were connected. The same was true for
layers 2 and 3 as well as 3 and 5, where the koniocellular lines were lacking (Fig. 2a,
black arrow). Although layers 1 and 2 were the thinnest structures, the magnocellular
neurons are clearly visible, due to the magnocellular neurons (Fig. 2a, inset). Layers 3
to 6, on the other hand, were composed of smaller and more densely packed cells. The
neurons on the lateral and medial horn of the LGB in each layer were loosely packed,
while the neurons at the hilum were denser.

In total, 13 sections were labeled by an expert in the left hemisphere and 11 sections
in the right hemisphere, with a distance of 0.6 mm. The LGB of the left hemisphere
was found and processed by the CNN on 366 sections (rostro-caudal extent 7.3 mm)
and on 293 coronal sections (extent of 5.9 mm) of the right hemisphere. For comparison
between the expert annotation and the prediction of the CNN see Fig. 2a and b.
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3.2 High-Resolution 3D Reconstruction

The exact location of the human LGB is depicted in the BigBrain model in Fig. 3a.
A high-resolution 3D reconstruction was performed to get a deeper insight into the
complex shape of the human LGB. The prominent hilum and the elongated lateral horn
are characteristic for the shape of the human LGB (Fig. 3b). In more detail, the dorsal
surface of the LGB is mainly covered by layers 4, 5 and 6. Layer 4 is more prominent
at the hilum and the medial horn (Fig. 3b), while layer 3 is most prominent at the lateral
horn (Fig. 3c). Most parts of the ventral surface of the LGB are covered by layer 1
medially and by layer 2 laterally (Fig. 3c).

3.3 Volumes of Layers

The total volumes of the LGB, after consideration of the shrinkage factor, are 120.5 mm3

on the left, and 113.2mm3 on the right hemisphere (Table 1). The parvocellular layers are
bigger than the magnocellular layers. The total volume of the LGB is 141.2 on the left,
and 132.2 mm3 on the right hemisphere. It contains the six layers, but also koniocellular
layers and blood vessels, which are not included in the volumes of the single layers.

Table 1. Volumes (in mm3) of each of the layer of the lateral geniculate body (LGB) in both
hemispheres, sum of layers 1–6, and total volume.

LGB Left [mm3] Right [mm3]

Layer 1 10.2 7.8

Layer 2 8.3 7.4

Layer 3 28.5 27.4

Layer 4 25.9 21.3

Layer 5 20.2 21.8

Layer 6 27.4 27.5

� of layers 1–6 120.5 113.2

Total 141.2 132.2
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Fig. 3. 3D reconstruction of the lateral geniculate body (LGB). (a) Localization of the left lateral
geniculate body (LGB) in the BigBrain model. (b-c) Surface of the reconstructed left and right
LGB revealing its specific shape and its different layers. (b) dorso-caudal view (c) ventro-rostral
view. Abbreviations: d = dorsal, l = lateral, m = medial, v = ventral.
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4 Discussion and Conclusion

This study presents the first application for mapping a complex subcortical gray matter
structure, the LGB, combining an expert-based and a deep-learning approach, resulting
in a high-resolution 3D reconstruction of the LGB in the BigBrain template. It shows,
for the first time, the shape of the individual six layers in 3D space while previous
information was mainly obtained from 2D sections. The maps are publicly available
in the EBRAINS multilevel human brain atlas (https://ebrains.eu/service/human-brain-
atlas), where they can be explored in an interactive 3D viewer (https://interactive-vie
wer.apps.hbp.eu/saneUrl/BigBrain_LGB) and can be found under the DOI: https://doi.
org/10.25493/33Z0-BX.

Due to the large size of the human brain, subcortical nuclei such as the LGB and
cortical areas are found in tens to hundreds to thousands of sections, in dependence on
the size of the structure. To map a structure manually in every section using traditional
methods becomes impossible when structures are complex or large. As an alternative
option, the extent of the structures can be interpolated. The drawback of this method
is that images have to be 3D reconstructed before further processing [16]. Herein, we
provide a use case using a semi-automated prediction of borders supported by deep
learning. The algorithm learns from manually annotated borders and is able to use this
knowledge for annotating the same area in previously unseen sections. Since it directly
interprets the texture and brain topology, it is much more precise than a 3D interpolation
in the reconstructed space and allows to use unregistered single sections.

Due to the large number of images and large size of the sections, training and appli-
cation of the CNN was performed on the supercomputer system JURECA [18] at Jülich
Supercomputing Centre (JSC). The use of high-performance computers becomes even
more relevant when larger structures are being analyzed in whole brain sections. While
computation in the LGB was completed in 2 h, comparable computations for the thala-
mus, for example, would take 50 h. Existing work on automatic classification of cytoar-
chitectonic cortical areas [16] also indicate that computational effort increases consid-
erably when trying to automatically identify larger brain regions with more complex
cytoarchitectonic and morphological properties.

Our findings of the total volume of the LGB, shrinkage factor included, is in line with
previous findings. Andrews and colleagues reported mean LGB volumes of 121mm3 for
the right and 115 mm3 for the left hemisphere; the variance was quite high and ranged
from 91.1 to 157 mm3 for both hemispheres [25]. Further investigations in additional
brains in the future would help to better understand intersubject variability in terms of
the size and/or shape of the LGB.

High-resolution mapping data of the LGB may open a broad field of applications.
For example, routine Magnetic Resonance Imaging (MRI) studies often lack sufficient
contrast and/or spatial resolution and could benefit from such atlas data. Current studies
on the implementation of electrically stimulated prostheses in the visual cortex aim
to restore part of the vision in blind people by multiple stimulations of electrodes to
percept light [26, 27], where such maps could be applied in the future to increase the
localization accuracy. The investigation of the pathomechanisms of diseases where the
visual pathway is affected, such asMultiple Sclerosis or glaucoma could be supported by
the maps [28, 29]. The maps provide input data for modelling and simulation of different
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types of neurons, neuronal pathways or networks using platforms like The Virtual Brain
[30]. With respect to basic neuroscience, the visualization and differentiation of the
layers is expected to contribute to a more in-depth analysis of information processing in
visual pathways. The present approach provides a use case for application in other brain
areas and brains of other species enabling a fast and detailed prediction of the extent
of small and complex structures, including visualization and volume analyses, with a
minimum of manual effort and time expenditure.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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