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Abstract. In recent years, Independent Component Analysis (ICA) has
successfully been applied to remove noise and artifacts in images obtained
from Three-dimensional Polarized Light Imaging (3D-PLI) at the meso-
scale (i.e., 64 um). Here, we present an automatic denoising procedure
for gray matter regions that allows to apply the ICA also to microscopic
images, with reasonable computational effort. Apart from an automatic
segmentation of gray matter regions, we applied the denoising procedure
to several 3D-PLI images from a rat and a vervet monkey brain section.

1 Introduction

Studying the structure and function of the brain requires dedicated imaging
techniques, allowing to map the highly complex nerve fiber architecture both
with high resolution and over long distances. The neuroimaging technique Three-
dimensional Polarized Light Imaging (3D-PLI) [1,2] was designed to reconstruct
the three-dimensional orientations of nerve fibers in whole brain sections with
micrometer resolution.

To remove noise and artifacts in 3D-PLI images, Independent Component
Analysis (ICA) has successfully been used [10-12]. However, the ICA has only
been applied to mesoscopic images with a resolution of 64 pm pixel size and not
to microscopic images with a resolution of 1.33 wm pixel size so far. In order
to resolve single nerve fibers, e.g. in the cerebral cortex, such a microscopic
resolution is required. Light scattering, thermal effects, inhomogeneity of optical
elements, or simply dust on the used filters are noise sources, which combined
with the weak birefringence 3D-PLI signal in cortical areas inevitably lead to a
low signal-to-noise ratio (SNR) and reconstruction errors.

Identifying and removing these noise components in microscopic 3D-PLI
images is very challenging. The amount of data that has to be processed is
extremely large and the sampling has to be done differently as compared to
mesoscopic images. When applying the developed ICA method on microscopic
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images, the characteristic differences of the signal strengths in white matter and
gray matter brain regions need to be taken into account. As the birefringence 3D-
PLI signal of densly packed nerve fibers (i.e., fiber bundles) of the white matter
proceeding within the sectioning plane are very strong and show a higher SNR
than the less dense fiber tracts present in the gray matter, the denoising proce-
dure needs only to be applied in regions of gray matter, which massively reduces
the required computing time.

Here, we present an automatic ICA denoising procedure for gray matter
areas in microscopic 3D-PLI images. It consists of an automatic segmentation
of gray matter, followed by a data-parallel ICA artifact removal with automatic
classification of noise and signal activations.

2 Methods

2.1 Preparation of Brain Sections

Brain sections from a Wistar rat (3 months old, male) and a vervet monkey (2.4
years old, male) were selected for evaluation.! The brains were removed from the
skull within 24 h after death, fixed in a buffered solution of 4 % formaldehyde for
several weeks, cryo-protected with 2% DMSO and a solution of 20% glycerin,
deeply frozen, and cut along the coronal plane into sections of 60 pm with a
cryostat microtome (Polycut CM 3500, Leica, Microsystems, Germany). The
resulting brain sections were mounted onto a glass slide each, embedded in a
solution of 20% glycerin, cover-slipped, sealed with lacquer, and measured with
3D-PLI up to one day afterwards.

2.2 Three-Dimensional Polarized Light Imaging (3D-PLI)

3D-PLI reconstructs the nerve fiber architecture of the brain with micrometer
resolution. By transmitting linearly polarized light through unstained histologi-
cal brain sections and analyzing the transmitted light with a circular analyzer,
the birefringence of the brain section is measured, thus providing information
about the three-dimensional orientations of the highly birefringent nerve fibers
(myelinated axons) in the tissue [1,2]. The 3D-PLI measurements were performed
with the same setup as described in [23] (LMP-1, Taorad GmbH, Germany),
using incoherent green light with a wavelength of about 550 nm. During the

! All animal procedures have been approved by the institutional animal welfare com-
mittee at Forschungszentrum Jiilich GmbH, Germany, and are in accordance with
European Union guidelines for the use and care of laboratory animals. The vervet
monkey brain was obtained when the animal was sacrificed to reduce the size of the
colony, where it was maintained in accordance with the guidelines of the Directive
2010/63/eu of the European Parliament and of the Council on the protection of ani-
mals used for scientific purposes or the Wake Forest Institutional Animal Care and
Use Committee IACUC #A11-219. Euthanasia procedures conformed to the AVMA
Guidelines for the Euthanasia of Animals.
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measurement, the direction of polarization of the incoming light was rotated by
p = {0°,10°,...,170°} and the transmitted light behind the circular analyzer
was recorded by a CCD camera (Qimaging Retiga 4000R) for each rotation
angle, yielding a series of N = 18 images. The pixel size in object space was
about 1.33 wm. For each image pixel, the measured intensity values form a sinu-
soidal light intensity profile (PLI-signal, I(p)). The average value of the signal,
i. e. the polarization-independent transmitted light intensity, is called transmit-
tance and is a measure for tissue absorption and scattering (highly scattering
tissue components such as nerve fibers appear dark in the transmittance image).
The amplitude of the normalized signal is called retardation and indicates the
strength of birefringence of the tissue. It is related to the out-of-plane angles
of the nerve fibers in the brain section (in-plane nerve fibers show very high
birefringence, while out-of-plane nerve fibers show much less [22]). The phase
of the signal indicates the in-plane direction angle of the nerve fibers. Com-
bining in-plane and out-of-plane angles, 3D-PLI allows to reconstruct the full
three-dimensional orientations of the nerve fibers.

2.3 Segmentation of White and Gray Matter

Morphologically, brain tissue consists of two different tissue types: Gray matter
and white matter. Gray matter contains various components, such as neuronal
cell bodies, dendrites, synapses, glial cells, blood capillaries as well as myelinated
and unmyelinated axons. Most of the gray matter regions are located at the outer
surface of the brain (cortex), but also inner parts of the brain (i.e., sub-cortical
nuclei) contain islands of gray matter. White matter is mainly composed of
myelinated and unmyelinated axons. The largest portion of myelinated axons is
located in the white matter.

For the ICA method presented here, it is necessary to consider gray matter
regions separately from white matter regions.? In the following, we present a
fully automated procedure to generate masks of white and gray matter.

As nerve fibers (myelinated axons) are highly birefringent, all regions with
high birefringence signals (i.e. large retardation values r > ripyes in the 3D-PLI
measurement, cf. Fig. 1(a) in orange) can be considered as white matter. (The
determination of threshold values such as rihres Will be described below.) On the
other hand, regions with low birefringence signals (r < Tthres, Fig. 1(a) in blue)
do not necessarily belong to gray matter, because regions with a small number
of myelinated fibers, crossing nerve fibers, and nerve fibers that point out of the
brain section (out-of-plane fibers) also yield low birefringence signals [22].

Studies by Menzel et al. [20] have shown that regions with crossing nerve
fibers and regions with in-plane parallel nerve fibers yield similar transmittance
values I, while regions with out-of-plane nerve fibers show lower transmittance
values. Gray matter regions, on the other hand, show notably higher trans-
mittance values. Hence, we can use the transmittance value in the region with

2 Note that we here define white matter as all regions (/image pixels) that contain
myelinated nerve fibers. Anatomically, some of these regions might be known as gray
matter because they only contain a small amount of myelinated nerve fibers.
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maximum retardation I;nax as a reference value (we expect that this region con-
tains mostly in-plane parallel nerve fibers) and can then define all regions with
similar or lower transmittance values as white matter (0 < It < Iipax, contain-
ing crossing and out-of-plane fibers). All other brain regions are considered to be
gray matter. To separate brain tissue from background, we make use of the fact
that the transmittance in the recorded images is expected to be much higher
outside of the tissue than within the tissue (It > lower, cf. Fig. 1(b) in gray).

To enable an automated segmentation into white and gray matter regions, we
consider the retardation and transmittance histograms (consisting of 128 bins,
see Fig. 1 on top). Before computing the transmittance histogram, the values are
normalized to [0, 1] and a median filter with circular kernel (radius of 10 pixels)
is applied to the image to reduce noise. While the retardation histogram shows
usually only a single peak at very low retardation values (caused by background
and gray matter), the transmittance histogram shows one peak for low transmit-
tance values (white matter), another peak for larger transmittance values (gray
matter), and a third peak for high transmittance values (background).

To compute the threshold value rinres (Lupper), We determine the point of
maximum curvature behind (before) the biggest peak in the retardation (trans-
mittance) histogram, i. e. the position for which the angle difference between two
neighboring data points becomes minimal. To ensure that the point of maximum
curvature belongs to the onset of the biggest peak (and not to some other peak
or outlier), we take the full width at half maximum (FWHM) of the peak into
account and only search within 10x FWHM behind the retardation peak and
2.5x FWHM before the transmittance peak, taking the different forms of the
histograms into account.

To compute I;max, the region with the maximum retardation value is deter-
mined. To ensure that the region belongs to a white matter region and is not an
outlier caused by noise, we use the Connected Components algorithm from the
OpenCV library [4] (block-based binary algorithm using binary decision trees
[6]) with eightfold connectivity. We mark all pixels with maximum retardation
value and count the number of pixels in the largest connected region. If the num-
ber is at least 512, we select this region as reference. If the number is lower, we
reduce the maximum retardation value iteratively by 0.01, until we find such a
region. In this reference region, we compute the average value in the normalized
transmittance image (Iymax, see red vertical line in Fig. 1(b)). This value can be
used as first estimate to separate white from gray matter. To define the border
more precisely, we use the point of maximum curvature between Imax and Iypper
as new threshold value Ijgyer.

Taking all this into account, we can compute the masks for white and gray
matter as follows:

White Matter: (0 < It < Dgwer) V (T > Tthres), (1)
Gray Matter: (liower < IT < Iypper) A (7' < Thres)- (2)

All image pixels that fulfill Eq.1 (Eq.2) are considered as white (gray) matter,
see Fig. 1(b) in white. All other image pixels are considered as background.
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Fig.1. Mask generation for white and gray matter, shown exemplary for a coronal
vervet monkey brain section. (a,b) Top: Histograms of retardation and transmittance
images obtained from a 3D-PLI measurement (128 bins in [0,1]); the determined thresh-
old values are marked by vertical dashed lines. Bottom: Image pixels with values belong-
ing to the orange, blue, and gray shaded regions in the histograms are marked in the
respective colors. (c) Masks for white and gray matter, computed using the threshold
values defined in the histograms on top. (Color figure online)

2.4 Independent Component Analysis (ICA)

The ICA belongs to the group of Blind Source Separation (BSS) techniques and
can be used for data decomposition to find statistically independent components
in a mixture of signals [17]. ICA has been applied to various artifact removal
tasks, e.g. ocular artifact removal in electroencephalography [13], cardiac arti-
fact removal in magnetoencephalography [5], and noise-signal-discrimination in
functional magnetic resonance imaging [21].
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In 3D-PLI, a data set consists of a series of N images (one for each rotation
angle). To avoid that the background interferes with the decomposition, each
image is divided into background and our region of interest (ROI) with the latter
containing M pixels. The measurements are flattened and centered to obtain a
zero-mean data array X with the dimension N x M. The decomposition into
sources S with the shape N x M requires that the data can be represented as
a linear mixture of independent signals without additional additive noise, that
there exist sufficient samples for every extracted feature (general advise is to
keep k- N? > M with k € {1,2,3,...}), and that the distribution of the sources
is non-Gaussian. With these prerequisites, the problem can be stated as

X = AS, (3)

where A is the so-called mixing matrix with the dimension N x N and is
yet unknown. Because S and A are both unknown, it is impossible to make
a prediction about sign or amplitude of the basis vectors of A. Furthermore,
we have no knowledge about the number of components in our data set, so we
assume that the complexity of the data can be mapped by N features.

Prior to performing the ICA, the data array X is whitened by making use of
a Principle Component Analysis (PCA) [24] to lower the degrees of freedom to
N(N —1)/2 [17]. The ICA then estimates W ~ A~! by maximizing the entropy
as in Infomax-based ICA [3] or by maximizing a measure of non-Gaussianity as
in FastICA [15,16]. We then obtain

WX =C~S, (4)

with the component vector C. We find the activation profiles of the Compo-
nents in W~ as basis vectors. It was shown that 3D-PLI signals contain sub- as
well as super-Gaussian independent components, therefore FastICA or Extended
Infomax [19], an extension of the Infomax algorithm, can be used. This work uses
the Extended-Infomax Implementation of the MNE-Toolbox [14].

2.5 Automatic Noise Removal with ICA

The activation profiles given by the ICA can be distinguished into two categories:
noise activation profile and signal activation profile. Because we know the PLI-
signal shape from theory, we know the shape of the basis vectors we are looking
for in our mixing matrix W—! ~ A. A simple classification problem is visualized
in Fig. 2. The sinusoidal shaped activations are the ones to keep and we want to
drop the activations that resemble random distributions.

The automatic identification is realized by fitting the expected (theoreti-
cal) function to each of the NV activations. As identification measure, the mean
squared error (MSE) is calculated for every fit and compared to the mean of all
MSE values. When the MSE of the ¢-th fit is smaller than 1/10 of the mean of
all MSE values, we assume that the activation belongs to a signal component.
Otherwise, we assume that the activation belongs to a noise component.
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Fig. 2. Archetypal signal discrimination for ICA artifact removal: (a) sinusoidal PLI-
signal activation, (b) random PLI-noise activation from e.g. thermal noise or light
scattering.

After the detection of all noise activations, we construct a denoised mixing
matrix W, L'~ A, by just zeroing out the respective column:

. . T
— Signal Activation 1 — —_ Signal Activation 1 — T
— Signal Activation 2 — — Signal Activation 2 —
— Signal Activation J — — Signal Activation J —

-1 _ —
Wi = | — Noise Aetivation 1 — | ~ [ — 0 —
— Noise Aetivafion 2 — — 0 —

— Noise Aetivation K — — 0 —
(5)

The denoised data array X4 can then be obtained by remixing the previously
unmixed components:

WlC =W, 'WX = X,. (6)

Estimation of Signal Enhancement. The noise reduction of the artifact
removal is measured with a weighted chi-square statistic introduced by [10].
It is based on the reduced chi-squared statistic defined by

N

2 )
i=1 O-(x7y7p)

with v for the degrees of freedom, N the number samples (here measure-
ment angles), I(p;) the measured light intensity for an angle, f(p;) the expected
function, and o(z, y, p) the standard error for every image point and angle. This
statistic is applied to both noisy and denoised data leading to x?2,,, and x3-,. We
denote the quotient of these two measures by relative Goodness of Fit (rGoF).
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In case one component is missing and the denoised signal is inherently different,
an additional weighting factor w defined by

(8)

is included in the denominator, which penalizes large deviations between the
expected function of the noisy signal f(p;) and the expected function of the
denoised signal f*(p;). The so obtained measure is denoted by weighted relative
Goodness of Fit (wrGoF):

rGoF  Xaw )
w Xica @’

where wrGoF > 1 is associated with a signal improvement while wrGoF < 1
is associated with a signal degradation.

wrGoF =

Parallelization Concept. The parallelization is implemented by distributing
the workload of the ICA problem equally in N parts to N workers via the
Message Passing Interface (MPI) with mpidpy [7-9]. Every n-th element is sent
to the n-th worker. After converging the result of all workers is collected and
fused to the end result.

3 Results

The denoising procedure was applied to 22 brain sections (14 coronal rat brain
sections and 9 coronal vervet brain sections). Every section was masked with
a gray matter mask (as described in Subsect.2.3) to remove background and
white matter areas. In all cases, three components of interest were found, each
with a sinusoidal activation function. The signal activations were kept and the
noise activations were automatically removed. The resulting components and
activations are shown exemplary for rat brain section no. 100 in Fig. 3.

The amount of wrGoF values are in all sections greater than one (>99.9%)
and mostly greater than ten (>99%). A spatial distribution of the values is
shown in Fig. 4 for the rat brain section (right) and a vervet brain section (left).
In Fig.5, three selected intensity profiles are shown for the rat brain section.
Each individual profile shows an improvement and the denoised profile describes
the measurement in a smooth way and is not influenced by outliers.
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Fig. 3. Independent Components C; for rat brain section no. 100 with their associ-
ated activations A;. The noise components are in the first and second row, the signal
components are in the last row.
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Fig. 4. Signal enhancement in a brain section visualized via the wrGoF measure. Left:
wrGoF-map of vervet brain section no. 627. Right: wrGoF-map of rat brain section
no. 100.

The alternating parallelization approach achieves a linear speedup of up to 12
cores (i.e. half of the cores on a node on the JURECA supercomputer [18]). The
usage of all cores on the node only improves the speedup by two additional units
as seen in Fig. 6. Overall, a weak scaling can be observed. While four nodes give
a speedup of factor 2 with respect to one node, six nodes only offer a speedup of
2.5. For a complete vervet brain section (sample size ~ 10® pixels), the run time
of the denoising routine for a single worker is about five hours. Using a whole
node lowers this to half an hour, and using four nodes lowers the run time to
15 min.

This scaling behavior is the same for the rat and the vervet brain sections.
Furthermore, the number of workers and therefore the number of partial ICA
problems do not interfere with the quality of the denoising process. The percent-
age of wrGoF values greater than one (>99.9%) or greater than ten (>99%) are
not influenced by the amount of parallelism.
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Fig. 5. Signal enhancement by the ICA denoising procedure shown for rat brain section
no. 100: The image on the upper left shows the transmittance of the brain section for
gray matter (background and white matter are displayed in black). The graphs show the
intensity profiles of three selected areas (colored dots in transmittance image) before
and after the denoising procedure.
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4 Discussion

In this work, an automatic denoising procedure for 3D-PLI data based on Inde-
pendent Component Analysis (ICA) for high-resolution PM data (with 1.33 pm
pixel size) was presented. Previous works studied the denoising of low-resolution
LAP data (with 64 pm pixel size) [10-12], but the application on PM data
was limited due to computational and memory constraints and was not fully
automatic. Furthermore, the existing solutions were not suitable for a high-
throughput workflow because masks for tissue had to be manually created or
adjusted.

To overcome these limitations, three key steps had to been taken: The first
step was to develop an automatic segmentation of brain tissue into white and
gray matter, so that the ICA can work targeted on the noisy gray matter. The
second step was an automatic detection of signal components in the ICA acti-
vations. The investigated brain sections showed good separability by a simple
MSE measure. The zeroing of noisy components was straightforward to imple-
ment. Due to the fast convergence and easy separability, there was no need
for constraints which would only complicate the procedure and add expensive
hyperparameter training as in [10]. The third step was to parallelize the ICA in
a pleasingly parallel manner to evenly distribute the workload and ensure that
each worker receive similar statistics. This showed a weak, but significant scaling
as shown in Fig. 6.

The obtained results for the wrGoF measure were consistently better than the
ICA denoising for LAP data presented in [10,11]. The values were not influenced
by the amount of parallelism. The amount of wrGoF values are in all brain
sections greater than one (>99.9%) and mostly greater than ten (>99%). Overall,
the results are very promising for high-throughput denoising of high-resolution
3D-PLI sections.
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