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ABSTRACT： Background: To evaluate whether hypertrophy after portal vein 

embolization (PVE) and maximum liver function capacity (LiMAx) are predictable 

by an artificial neural network (ANN) model based on computed tomography 

(CT) texture features. Methods: We report a retrospective analysis on 118 patients 

undergoing preoperative assessment by CT before and after PVE for subsequent 

extended liver resection due to malign tumor at RWTH Aachen University 

hospital. LiMAx test was carried out in a subgroup of 55 patients prior to PVE. 

Associations between CT texture features and hypertrophy as well as liver 

function were assessed by a multilayer perceptron ANN model. Results: Liver 

volumetry showed a median hypertrophy degree of 33.9% (16.5%-60.4%) after 

PVE. Non-response, defined as a hypertrophy grade lower than 25%, was found 

in 36.5% (43/118) of the cases. ANN prediction of hypertrophy response showed 

sensitivity of 95.8%, specificity of 44.4% and overall prediction accuracy of 74.6% 

(p<0.001). Observed median LiMAx was 327 (248-433) μg/kg/h and was strongly 

correlated to predicted LiMAx (R2=0.89). Conclusion: Our study shows that an 

ANN model based on CT texture features can be able to predict maximum liver 

function capacity and may be useful to assess potential hypertrophy after 

performing PVE. 
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INTRODUCTION 

Surgical resection is an important pillar of curative therapy of 

malignant primary and secondary liver tumors. Even extended liver 

resections are nowadays possible with reasonable morbidity and 

mortality rates lower than 30% and 3%, respectively. Functional recovery 

of liver remnant is mainly influenced by the future liver remnant (FLR) 

and the preoperative liver function (1). Liver volumetry and function tests 

are routinely used to estimate the future liver remnant volume (FLRV) 

and volume thresholds exist for a prospectively safe hepatectomy (2). 

Patients with insufficient FLRV and/or future liver remnant function 

(FLRF) must be considered for preoperative hypertrophy induction 

techniques such as portal vein embolization (PVE) or associating liver 

partition and portal vein ligation for staged hepatectomy (ALPPS) (3, 4). 

However, a clinical dropout rate of 20-40% due to slow liver hypertrophy 

and concurrent tumor progression during the waiting period is reported 

(5).  

Computer tomography (CT) is a mandatory element of the 

preoperative workup prior to liver resection in malignant liver disease. It 

is not only recognized as a sensitive diagnostic tool but has already been 

shown to be suitable for characterization of liver functionality (6). To 

further develop the value of image-based functional diagnostics, studies 

have been published that have investigated the relationship between 

radiomic texture analysis and biological and clinical characteristics using 

artificial neural networks (7, 8). However, the potential correlation 

between radiomic texture features and hypertrophy after PVE has not 

been investigated yet. An estimation prior to PVE, would be of 

considerable clinical value and change clinical management in patients 

who are less likely to show significant hypertrophy. Therefore, the aim of 

this pilot study was to investigate the possibility to predict the 

hypertrophy potential after PVE using radiomic feature analysis by an 

artificial neural network. In addition, a subgroup with available dynamic 

liver function tests was used to investigate the correlation between 

radiomic features and the enzymatic liver function determined by the 

LiMAx (maximum liver function capacity) test (9). 

PATIENTS AND METHODS 

Study population 

We report a retrospective analysis on patients undergoing 

preoperative assessment by CT before and after portal vein embolization 

for subsequent extended liver resection due to malignant tumor at RWTH 

Aachen University hospital. We included 118 patients who were eligible 

for PVE between August 2011 and November 2016. Exclusion criteria 

were unavailability of CT, history of liver surgery or interventions, and 

missing clinical data. Data and imaging of portal vein embolization were 

prospectively collected, pseudonymized and saved in an institutional 

database. Radiological imaging was performed 1-9 days prior to PVE and 

13-24 days after PVE. The Institutional Review Board approval was 

obtained before analysis of the data (No. 363/19). In addition, 55 patients 

underwent a subgroup analysis evaluation the results of the dynamic liver 

function test LiMAx. 

CT imaging and volumetry 



CT imaging was acquired with a dual-source CT scanner (Siemens 

Somatom Force, Siemens AG, München, Germany) using the following 

parameters: 120 kVp tube voltage; 0.5s gantry rotation, and 5‐mm 

reconstruction thickness. A senior HPB fellow conducted a volumetric 

analysis using the IntelliSpace Portal 8.0 software tool (Philips healthcare, 

Amsterdam, The Netherlands). Total liver volume (TLV), tumor volume 

(TV), and FLR were subsequently computed by the program after manual 

delineation of margins in every slide. In each of these calculations, TV was 

considered to be non-functional. The calculated FLR (cFLR) was then 

computed as described before (10). Hypertrophy was defined as 

proportionally increase in cFLR. Patients displaying a hypertrophy of less 

than 25% were defined as non-responders. 

Image postprocessing 

We collected the obtained CT images in portalvenous phase and used 

ITK-SNAP 3.6.0 (GNU, General Public License) to create spherical 3D 

regions of interest (ROIs) in portalvenous healthy liver tissue using a 

spherical brushing tool as shown in Picture 1 (11). The liver tissue 

delineation was separately exported to NIFTI format. Radiomics feature 

calculation was done using PyRadiomics 2.1.1. (Open source, 

www.radiomics.io) PyRadiomics is a widely used library written in 

Python and takes both the original CT scan as well as the created ROI in 

order to calculate radiomics features from the image inside the ROI only 

(12). The purpose of these radiomics features is to capture and quantify 

the texture characteristics of the tissue inside the ROI. 

Picture 1: Spherical region of interest (ROIs) in portalvenous healthy liver 

tissue (axial plane) using ITK-snap. 

 

 

 

 



PVE 

PVE was considered in patients with an FLR of less than 30%. The 

decision for PVE was made by an experienced HPB surgeon in 

interdisciplinary consensus with a trained interventional radiologist. PVE 

was performed in percutaneous transhepatic ipsilateral technique (13). 

After transhepatic CT-guided puncture of the right portal branch a 

catheter was implanted into the right portal vein. A combination of n-

butyl-cyanoacrylate (Braun, Tuttlingen, Germany) and lipiodol (Guerbet, 

Roissy, France) was used to embolize the right portal vein branches (V-

VIII) at a ratio of 1:2 to 1:3. Via repeated portography, successful 

embolization with free blood flow to the remaining left liver segments was 

confirmed. 

LiMAx test 

LiMAx test was carried out in 55 patients prior to PVE with 

borderline FLR or clinical suspected liver parenchymal defect. The LiMAx 

test is based on hepatic 13C-methacetin (Euriso-top, Saint-Aubin Cedex, 

France) metabolism by the cytochrome P450 1A2 system (CYP1A2) and 

was performed as described before (14). The regular capacity level for 

liver function is assumed to be > 315 μg/kg/h (1). 

Statistical analysis by an artificial neural network 

The primary objective of this study was to identify PVE non-

responder (hypertrophy < 25%) prior to PVE and to predict the 

hypertrophy potential using radiomic texture analysis. Additionally, a 

subgroup analysis of the patients with measured LiMax was performed 

to investigate whether a prediction of liver function using texture analysis 

is feasible. Categorical data are presented as counts and percentages, 

while data derived from continuous variables are presented as mean and 

interquartile range. Associations between radiomic features and 

hypertrophy as well as liver function were assessed by a multilayer 

perceptron (MLP) ANN model with a back-propagation algorithm. Using 

Minimum Redundancy Maximum Relevance (mRMR) we selected a total 

of 51 texture features for hypertrophy analysis and 53 features for liver 

function analysis by linear regression analysis to construct the final ANN 

model. It consisted of 3 layers and included 118 cases for hypertrophy 

prediction and 55 cases for the prediction of liver function. The data was 

randomly divided into a training and a test-sample. Cross-validation was 

used to minimize overfitting. Predicted LiMAx and measured LiMAx 

values were then included into a linear regression analysis and 

correlations were analyzed using Pearson`s correlation coefficient. Binary 

prediction of PVE non-responder (hypertrophy < 25%) was evaluated by 

means of sensitivity and specifity. Receiver operating characteristic (ROC) 

analysis was carried out by evaluation of the area under the curve (AUC). 

The level of significance was set to p < 0.05, and p values are given for 

two-sided testing. Analyses were performed using SPSS Statistics 25 (IBM 

Corp., Armonk, NY, USA) and MATLAB (MATLAB 2018a, The 

MathWorks, Inc., Natick, MS, USA.). 

 

 

 



RESULTS 
We here analyzed a cohort of 118 patients who underwent PVE and 

perioperative workup at RWTH Aachen University hospital between 

April 2010 and March 2017. Clinical and peri-interventional 

characteristics are shown in Table 1. A total of 88 male and 30 female 

patients with a median age of 65 (56-72) years and a median BMI of 24.9 

(22.5-27.7) kg/m2 was included in the analysis. Most frequent diagnosis 

was cholangiocellular carcinoma (CCA) (42.4%), followed by colorectal 

liver metastasis (CRLM) (39.0%) and non-colorectal liver metastasis (LM) 

(13.6%), and hepatocellular carcinoma (HCC) (5.1%).  Chemotherapy was 

carried out in 31.4% of the cases. In the postoperative histological analysis 

of the liver, 15.3% of patients displayed fibrosis, 5.9% steatosis and 5.5% 

cirrhosis. Liver volumetry showed a median cFLR of 22.9% (17.6%-29.3%) 

prior to PVE and a cFLR of 31.5% (24.0%-37.3%) after PVE with a median 

hypertrophy degree of 33.9% (16.5%-60.4%). Non-response after PVE, 

defined as a hypertrophy grade lower than 25%, was found in 36.5% 

(43/118) of the cases. The final three-layer ANN model for hypertrophy 

response prediction was then developed and trained with all 118 patients 

and the extracted radiomic texture features of the CT. The data randomly 

was divided into a training sample (83 cases, 73%) and a test sample (30 

cases, 26.5%). We adjusted our ratio to the limited sample size and chose 

the ratio as already published (15, 16). ANN prediction of hypertrophy 

response showed sensitivity of 95.8%, specificity of 44.4% with an overall 

prediction accuracy of 74.6% (p<0.001). AUC of the ROC curve analysis 

was 0.75 as shown in Figure 1. 

Table 1. Clinical characteristics pre- and post-PVE. 

Demographics (n=118) #/% 

Gender, m/f (%) 88 (74.6)/30 (25.4) 
Age (years) 65 (56-72) 
BMI (kg/m2) 24.9 (22.5-27.7) 
Diagnosis, n (%) 
CRLM 
HCC 
CCA 
Other LM 

 
46 (39.0) 
6 (5.1) 

50 (42.4) 
16 (13.6) 

ASA, n (%)  
I 23 (19.5) 
II 38 (32.2) 
III 48 (40.7) 
IV 2 (1.7) 

Clinical characteristics #/% 

Pre-interventional Chemotherapy, 
n (%) 

37 (31.4) 

Steatosis, n (%) 7 (5.9) 
Fibrosis, n (%) 18 (15.3) 
Cirrhosis, n (%) 5 (5.5) 

Volumetric Data #/% 

Pre-PVE  
TLV (ml) 1840 (1503-2212) 
FLR (ml) 419 (305-554) 
cFLR (%) 22.9 (17.6-29.3) 
Post-PVE  
TLV (ml) 1824 (1569-2139) 
FLR (ml) 534 (436-705) 
cFLR (%) 31.5 (24.0-37.3) 
Degree of hypertrophy (%) 33.9 (16.5-60.4) 

Data presented as median and interquartile range if not noted otherwise. BMI 

body mass index, ASA American society of anesthesiologists classification, cFLR 

calculated future liver remnant, FLR future liver remnant, PVE portal vein 

embolization, TLV total liver volume. 



Figure 1. ROC curve analysis of the ANN model predicting hypertrophy>25% 

after PVE. 

 

A further subanalysis of 55 cases with available LiMAx data was 

performed to investigate prediction of LiMAx by the ANN. Clinical and 

peri-interventional characteristics are shown in Table 2. Liver steatosis 

was observed in 5.5% of the cases of this subset while fibrosis occurred in 

10.9% and cirrhosis in 5.5%, respectively. Median LiMAx was 327 (248-

433) μg/kg/h before performing any intervention or resection. A three-

layer ANN with the extracted radiomic texture features was then 

constructed and trained to predict maximum liver function capacity. The 

data randomly was divided into a training sample (41 cases, 75.9%) and a 

test sample (13 cases, 24.1%). Predicted vs. observed LiMAx values are 

shown in Figure 2. Linear regression analysis revealed a strong correlation 

between predicted and observed values with an R2 of 0.89. A score test 

using Spearman correlation showed a coefficient of 0.723 (CI: 0.536-0.924) 

and confirmed the observed strong correlation.  

 

 

 

 

 

 

 

 

 



Table 2. Clinical characteristics of the LiMAx subgroup. 

Demographics (n=55) #/% 

Gender, m/f (%) 39 (70.9)/16 (29.1) 
Age (years) 64 (53-69) 
BMI (kg/m2) 24.8 (21.9-27.7) 
Diagnosis, n (%) 
CRLM 
HCC 
CCA 
Other LM 

 
23 (41.8) 
3 (5.5) 

19 (34.5) 
10 (18.2) 

ASA, n (%)  
I 15 (27.3) 
II 15 (27.3) 
III 19 (34.5) 
IV 0 (0) 

Clinical characteristics #/% 

Pre-interventional Chemotherapy 17 (30.9) 
Steatosis, n (%) 3 (5.5) 
Fibrosis, n (%) 6 (10.9) 
Cirrhosis, n (%) 3 (5.5) 

Liver function # 

LiMAx (µg/kg/h) 327 (248-433) 

Data presented as median and interquartile range if not noted otherwise. BMI 

body mass index, ASA American society of anesthesiologists classification. 

Figure 2. Regression analysis of predicted LiMAx vs. measured LiMAx . 

 

 

 

 

 

 

 



DISCUSSION 

In this study we investigated the predictability of hypertrophy after 

PVE and LiMax by an ANN model of CT texture features. We 

demonstrated that an ANN model predicting hypertrophy after PVE 

based on CT texture features classified the patients with an accuracy of 

74.6% correctly to either responder or non-responder. In addition, another 

ANN model based on a subgroup was able to predict LiMAx. The present 

study is the first to investigate the relationship between CT texture 

features and PVE-induced hypertrophy of FLR as well as LiMAx by an 

ANN model. CT has already been described as an accurate tool to assess 

morphological changes of liver parenchyma such as hepatic fibrosis (17). 

However, the role of CT texture analysis in predicting the actual liver 

function or regeneration potential after PVE remains unclear. A study by 

Theilig et al. demonstrated the role of Gadoxetic acid-enhanced magnetic 

resonance imaging (MRI) as an imaging-based liver function test before 

and after PVE to predict post hepatectomy liver failure (18). Additionally, 

studies by Denbo et al. and Schulze-Hagen et al. revealed an association 

between sarcopenia and poor hypertrophy after PVE which may be 

caused by liver parenchyma dystrophy (19, 20). To validate the hypothesis 

whether the hypertrophic potential is predictable using implicit CT 

imaging features, these were extracted from pre-PVE imaging and 

transferred into an ANN model. Recent studies already demonstrated the 

value of ANN‘s in medical imaging for automated detection and 

classification of breast masses (21, 22). Finally, our ANN model was able 

to predict a sufficient post-PVE liver hypertrophy of more than 25% with 

acceptable accuracy of 74.6% based on the portal venous phase of the CT. 

However, the specificity of 44.4% was certainly limited, so that this model 

in its current configuration is not sufficient for clinical use. Thüring et al. 

could already show that ANN allows to make a CT based statement about 

parenchyma quality and functional liver status. The authors were able to 

assess Child-Pugh class based on multiphase liver CT by a convolutional 

neural network algorithm (7). Another hypothesis resulting from this 

observation was whether the actual liver function determined by LiMAx 

is predictable by ANN using CT imaging. Therefore, we further analyzed 

a subgroup of 55 patients with available LiMAx data. The LiMAx test 

evaluates the hepatic 13C-methacetin metabolism and has already been 

used to determine liver function after liver resection, liver transplantation 

as well as in liver cirrhosis and non-alcoholic steatohepatitis (1, 23-25). 

While the value of gadoxetic acid-enhanced MRI is widely recognized as 

an image-based liver function test, data on liver function evaluation by 

CT using ANN is very limited (26-28). After constructing the ANN model 

in our study, a strong correlation between measured and predicted 

LiMAx values could be demonstrated. Interestingly, our model showed 

reasonable accuracy estimating LiMAx based on CT features considering 

the small number of cases which were analyzed. To the best of our 

knowledge, this is the first investigation of the prediction of liver function 

by CT using an ANN model. The construction of an algorithm with high 

validity could considerably simplify liver function testing, as the current 

measurement using LiMAx is cost-intensive and requires an invasive 

measurement on the patient using a breathing mask (9). 

Our study has several limitations that need to be discussed. First, this 

is a retrospective study with relatively small sample size which limits 

validity and may be subject to selection bias. Another limitation is the 

potential variability of radiomic features when using alternate CT 

protocols, which may impair the reproducibility (29). Furthermore, 



although we performed crossvalidation and filtered irrelevant input 

variables by linear regression analysis to avoid overfitting, the 

performance and reproducibility of the results of the ANN model need to 

be tested and validated with a larger cohort in a prospective manner.  

In conclusion, this pilot study shows that an ANN model based on 

CT texture features can be able to predict maximum liver function 

capacity and may be useful to assess potential hypertrophy after 

performing PVE.  
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ABREVIATIONS 

ALPPS  Associating liver partition with portal vein ligation for staged 

hepatectomy 

ASA   American society of anesthesiologists 

BMI    Body-mass-index 

CCA   Cholangiocellular carcinoma 

CRLM  Colorectal liver metastases 

CT    Computed tomography 

FLR    Future liver remnant 

FLRF   Future liver remnant function 

FLRV  Future liver remnant volume 

HCC   Hepatocellular carcinoma 

INR   International normalized ratio 

LiMAx  Maximum liver function capacity 

LM   Non-colorectal liver metastasis 

MLP   Multilayer perceptron 

MRI    Gadolinium-based magnetic resonance imaging 

PVE    Portal vein embolization 

ROI   Region of interest 
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