000894204 001__ 894204
000894204 005__ 20240313103125.0
000894204 0247_ $$2Handle$$a2128/28450
000894204 037__ $$aFZJ-2021-03095
000894204 041__ $$aEnglish
000894204 1001_ $$0P:(DE-Juel1)178725$$aBouss, Peter$$b0$$eCorresponding author$$ufzj
000894204 1112_ $$a30th Annual Computational Neuroscience Meeting$$cOnline$$d2021-06-28 - 2021-07-07$$wOnline
000894204 245__ $$aSurrogate methods for spike pattern detection in non-Poisson data
000894204 260__ $$c2021
000894204 3367_ $$033$$2EndNote$$aConference Paper
000894204 3367_ $$2BibTeX$$aINPROCEEDINGS
000894204 3367_ $$2DRIVER$$aconferenceObject
000894204 3367_ $$2ORCID$$aCONFERENCE_POSTER
000894204 3367_ $$2DataCite$$aOutput Types/Conference Poster
000894204 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1628601571_23647$$xAfter Call
000894204 502__ $$cRWTH Aachen
000894204 520__ $$aIn order to detect significant spatio-temporal spike patterns (STPs) at ms-precision, we developed the SPADE method[1-3]. SPADE enables the detection and evaluation of spatio-temporal patterns (STPs), i.e., spike patterns across neurons and with temporal delays. For the significance assessment of STPs, surrogates are generated to implement the null hypothesis. Here we demonstrate the requirements for appropriate surrogates.SPADE first discretizes the spike trains into bins of a few ms width. The discretization also includes clipping, i.e., if a bin is occupied by 1 or more spikes, its content is set to 1. The binarized spike trains are then mined for STPs with Frequent Itemset Mining, counting identical patterns. For the assessment of these patterns' significance, surrogata spike trains are used. The surrogate data are mined as the original data resulting in a p-value spectrum for the significance evaluation[3].Surrogate data are modifications of the original data where potential time-correlations are destroyed and thus implement the null hypothesis of independence. For that purpose, the surrogate data need to keep the statistical features of the original data as similar as possible to avoid false positives. A classical choice for a surrogate is uniform dithering (UD), which independently displaces each individual spike according to a uniform distribution. We show that UD makes the spike trains more Poisson-like and does not preserve a potential dead time after the spikes. As a consequence, more spikes are clipped away as compared to the original data. Thus, UD surrogate data reduce the expectation for the patterns.To overcome this problem, we evaluate different surrogate techniques. The first is a modification of UD that preserves the dead time. Further, we employ (joint-)ISI dithering, preserving the (joint-)ISI distribution[4]. Another surrogate is based on shuffling bins of already discretized spike data within a small window. Lastly, we evaluate trial shifting that shifts the whole spike trains against the others, trial by trial, according to a uniform distribution. To evaluate the effect of the different surrogate methods on significance assessment, we first analyze the surrogate modifications on different types of stochastic spike models, such as Poisson spike trains, Gamma spike trains but also Poisson spike trains with dead time[5]. We find that all surrogates but UD are robust to clipping. Trial shifting is the technique that preserves best the statistical features of the spike trains.   Further, we analyze artificial data sets for the occurrence of false-positive patterns. These data sets were generated with non-stationary firing rates and interval statistics taken from an experimental data set but are otherwise independent. We find many false positives for UD but all other surrogates show a consistently low number of false-positive patterns. Based on these results, we conclude with a recommendation on which surrogate method to use.References1. Torre et al (2016) DOI:10.1523/JNEUROSCI.4375-15.2016.2. Quaglio et al. (2017). DOI:10.3389/fncom.2017.00041.3. Stella et al. (2019). DOI:10.1016/j.biosystems.2019.104022. 4. Gerstein (2004).5. Deger at al. (2011). DOI: 10.1007/s10827-011-0362-8.
000894204 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000894204 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000894204 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x2
000894204 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000894204 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x4
000894204 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x5
000894204 7001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b1$$ufzj
000894204 7001_ $$0P:(DE-Juel1)172768$$aPalm, Günther$$b2$$ufzj
000894204 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b3$$ufzj
000894204 8564_ $$uhttps://juser.fz-juelich.de/record/894204/files/Poster.pdf$$yOpenAccess
000894204 909CO $$ooai:juser.fz-juelich.de:894204$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000894204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178725$$aForschungszentrum Jülich$$b0$$kFZJ
000894204 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178725$$aRWTH Aachen$$b0$$kRWTH
000894204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b1$$kFZJ
000894204 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171932$$aRWTH Aachen$$b1$$kRWTH
000894204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172768$$aForschungszentrum Jülich$$b2$$kFZJ
000894204 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172768$$a University of Ulm$$b2
000894204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b3$$kFZJ
000894204 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144168$$aRWTH Aachen$$b3$$kRWTH
000894204 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000894204 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000894204 9141_ $$y2021
000894204 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894204 920__ $$lyes
000894204 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000894204 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000894204 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000894204 9801_ $$aFullTexts
000894204 980__ $$aposter
000894204 980__ $$aVDB
000894204 980__ $$aUNRESTRICTED
000894204 980__ $$aI:(DE-Juel1)INM-6-20090406
000894204 980__ $$aI:(DE-Juel1)IAS-6-20130828
000894204 980__ $$aI:(DE-Juel1)INM-10-20170113
000894204 981__ $$aI:(DE-Juel1)IAS-6-20130828