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Context

Detection of significant correlated neuronal activity, which is thought
to be a signature of cell-assembly activity [1, 2], is a challenging en-
deavor from a statistical perspective. To identify active cell assem-
blies, we have developed a method, SPADE [3, 4, 5], that detects
spatio-temporal spike patterns with millisecond precision and
tests them for significance.

Massively-parallel spike train recordings are discretized to 0-1 bins
(clipping), allowing us to extract pattern candidates using Frequent
Itemset Mining [6]. Surrogate spike trains are then used to gen-
erate a null hypothesis of conditional independence given firing rates.
The pattern candidates are tested for significance by comparing them
to the patterns found by applying the mining algorithm to the sur-
rogate spike trains.
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SPADE analysis workflow. The figure shows the sequence of analysis steps of SPADE from

the original data to the final significant spatio-temporal patterns.

Spike count reduction due to uniform dithering

A classical choice for surrogate data to implement the null hypothesis
is uniform dithering (UD). Each surrogate spike train is a copy of
the original one, with each spike displaced according to a uniform
distribution (typically ±25 ms). Relevant aspects opposing the use
of uniform dithering are

• that a possible refractory period of the spike trains is not preserved,

• the ISI distribution approaches that of a Poisson process,

• and after clipping there are fewer spikes in the surrogates than in
the clipped original spike trains.
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Spike count reduction in an experimental session [7] before and after UD. Each dot represents

a neuron.
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Illustration of the different surrogate methods: A Uniform Dithering (UD) [8, 9], B

Uniform dithering with dead time (UDD), C Joint ISI-Dithering (JISI-D) [10], D ISI-Dithering

(ISI-D), E Trial Shifting (TR-SHIFT) [8, 9], F Window Shuffling (WIN-SHUFF)

Analysis of stationary test
data

To evaluate the properties of the different surrogate techniques
for use in the null hypothesis, we first examine the effect of these
techniques on spike trains modeled using three renewal point pro-
cess models: Poisson process, Poisson process with dead time
(PPD; d = 1.6 ms; [11]), and gamma process (γ = 1.23).
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Analysis of surrogate statistics. The upper panel shows the spike count decrease for the

different surrogate techniques (color), and spike train models (left to right). The lower panel

shows the surrogate ISI distributions.

The first result of this study is that all surrogate spike trains fol-
low very closely the spike count decrease and the ISI distribution
of the original spike trains, with some deviations for UDD, JISI-D
and ISI-D. Considering the PPD process, we notice how much the
surrogates of UD differ from all others, both in spike count de-
crease and ISI distribution. The effect on the spike count decrease
is very similar to what we have already observed in the experi-
mental data. We conclude that when spike trains are clipped, the
consideration of the dead time is of central importance. Finally,
also for the gamma process, i.e., regular spike trains, we observe
that the spike count decrease is highest for UD.

Analysis of non-stationary
test data

After analyzing the statistical properties of stationary surrogate
spike trains, we go a step further to consider non-stationary, in-
dependent, artificial data whose properties follow those of exper-
imental data (two sessions of two different macaque monkeys,
pre-/motor cortex [7]). Thus, we can check how far the different
surrogate techniques lead to false positive spike patterns in the
context of realistic data.

Characteristics of the artificial data:

• Same number of neurons as in experimental data.

•Models are non-stationary PPD and gamma processes.

•The firing rate profiles are estimated from each single unit using
optimized kernel density estimation [12].

•The dead time for PPD, and shape factor for gamma are both
estimated from each single experimental unit.
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Analysis of surrogate statistics. The upper panel shows the spike count decrease for the

different surrogate techniques (color), and spike train models (left to right). The lower panel

shows the surrogate ISI distributions.
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False positive results of analysis of artificial data.

From the analysis regarding false positives on the artificial data,
we conclude that:

•Uniform dithering yields many false positives for data that either
has a dead time, or is regular.

•All alternative surrogate methods have a stable low number
of false positives (except UDD on gamma data).

• Further, the false positive patterns are mostly consistent across
surrogate techniques.

Conclusions

We investigated the effect of surrogate methods used for significance analysis of spatio-temporal spike patterns.
First, we observed that using uniform dithering together with spike train discretization yield a spike count
mismatch between original spike trains and surrogate data. We further analyzed this aspect on three different
spike train models, highlighting the relevance of the dead time. Analyzing realistic artificial data, we showed
that the proposed surrogate alternatives yield a low false positive count. Given that the results are consistent
between the techniques, we recommend using trial-shifting as method of choice. It is the simplest employed
method, best preserving all statistical features.
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