001     894207
005     20210831151936.0
024 7 _ |a 10.1073/pnas.2100469118
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 2128/28350
|2 Handle
024 7 _ |a altmetric:110470223
|2 altmetric
024 7 _ |a 34301910
|2 pmid
024 7 _ |a WOS:000685039000028
|2 WOS
037 _ _ |a FZJ-2021-03098
082 _ _ |a 500
100 1 _ |a Schirmeyer, Jana
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Thermodynamic profile of mutual subunit control in a heteromeric receptor
260 _ _ |a Washington, DC
|c 2021
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1627470460_2583
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼−3.5 to ∼−5.5 kJ ⋅ mol−1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼−9.6 to ∼−9.9 kJ ⋅ mol−1. Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed–open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 1
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 2
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hummert, Sabine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eick, Thomas
|0 0000-0002-2153-5405
|b 2
700 1 _ |a Schulz, Eckhard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schwabe, Tina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ehrlich, Gunter
|0 0000-0003-0320-6162
|b 5
700 1 _ |a Kukaj, Taulant
|0 0000-0002-7166-0327
|b 6
700 1 _ |a Wiegand, Melanie
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sattler, Christian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schmauder, Ralf
|0 0000-0002-8441-4264
|b 9
700 1 _ |a Zimmer, Thomas
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kosmalla, Nisa
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Münch, Jan
|0 0000-0002-9177-6466
|b 12
700 1 _ |a Bonus, Michele
|0 0000-0003-4411-7342
|b 13
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 14
700 1 _ |a Benndorf, Klaus
|0 0000-0002-0707-4083
|b 15
|e Corresponding author
773 _ _ |a 10.1073/pnas.2100469118
|g Vol. 118, no. 30, p. e2100469118 -
|0 PERI:(DE-600)1461794-8
|n 30
|p e2100469118
|t Proceedings of the National Academy of Sciences of the United States of America
|v 118
|y 2021
|x 1091-6490
856 4 _ |u https://juser.fz-juelich.de/record/894207/files/e2100469118.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894207
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 2
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2019
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b P NATL ACAD SCI USA : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-29
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 2
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21