000894217 001__ 894217
000894217 005__ 20210816204452.0
000894217 0247_ $$2doi$$a10.1021/acs.analchem.0c03379
000894217 0247_ $$2ISSN$$a0003-2700
000894217 0247_ $$2ISSN$$a0096-4484
000894217 0247_ $$2ISSN$$a1520-6882
000894217 0247_ $$2ISSN$$a1541-4655
000894217 0247_ $$2Handle$$a2128/28388
000894217 0247_ $$2altmetric$$aaltmetric:97079059
000894217 0247_ $$2pmid$$a33393290
000894217 0247_ $$2WOS$$aWOS:000618089100020
000894217 037__ $$aFZJ-2021-03106
000894217 082__ $$a540
000894217 1001_ $$0P:(DE-Juel1)167455$$aWang, Liming$$b0$$eFirst author
000894217 245__ $$a18 O Isotope Labeling Combined with 31 P Nuclear Magnetic Resonance Spectroscopy for Accurate Quantification of Hydrolyzable Phosphorus Species in Environmental Samples
000894217 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2021
000894217 3367_ $$2DRIVER$$aarticle
000894217 3367_ $$2DataCite$$aOutput Types/Journal article
000894217 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627891352_15318
000894217 3367_ $$2BibTeX$$aARTICLE
000894217 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894217 3367_ $$00$$2EndNote$$aJournal Article
000894217 520__ $$a31P nuclear magnetic resonance (NMR) spectra can be biased due to the hydrolysis of labile P species during sample treatment and NMR analysis. This paper offers an approach to circumvent this problem by performing sample preparation and analysis in 18O-enriched medium. Heavy 18O isotope atoms were introduced into the resulting artificial hydrolysis products. The NMR signal of 18O-labeled P was shifted upfield relative to the unlabeled P nuclei in natural metabolites. This isotope shift enabled an immediate differentiation of artificial hydrolysis products from natural metabolites. Moreover, the hydrolysis products could be accurately quantified. Our data suggest that the extent to which artificial hydrolysis alters NMR spectra varies among different types of environmental samples. For instance, 72–84% of the detected monoesters in the organic soils of this study were actually artificially hydrolyzed diesters. By contrast, artificial hydrolysis products in the mineral soils used for this study accounted for less than 6% of the total monoesters. Polyphosphate was also hydrolyzed to yield 18O-labeled products in algal biomass.
000894217 536__ $$0G:(DE-HGF)POF4-2151$$a2151 - Terrestrial ecosystems of the future (POF4-215)$$cPOF4-215$$fPOF IV$$x0
000894217 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894217 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b1$$ufzj
000894217 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b2$$eCorresponding author$$ufzj
000894217 773__ $$0PERI:(DE-600)1483443-1$$a10.1021/acs.analchem.0c03379$$gVol. 93, no. 4, p. 2018 - 2025$$n4$$p2018 - 2025$$tAnalytical chemistry$$v93$$x1520-6882$$y2021
000894217 8564_ $$uhttps://juser.fz-juelich.de/record/894217/files/acs.analchem.0c03379.pdf
000894217 8564_ $$uhttps://juser.fz-juelich.de/record/894217/files/Manuscript%20File-1.pdf$$yPublished on 2021-01-03. Available in OpenAccess from 2022-01-03.
000894217 909CO $$ooai:juser.fz-juelich.de:894217$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167455$$aForschungszentrum Jülich$$b0$$kFZJ
000894217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b1$$kFZJ
000894217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b2$$kFZJ
000894217 9131_ $$0G:(DE-HGF)POF4-215$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2151$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vTerrestrische Umwelt und Wasserressourcen: Dynamiken unter globalem Wandel und Klimawandel$$x0
000894217 9141_ $$y2021
000894217 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894217 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAL CHEM : 2019$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bANAL CHEM : 2019$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000894217 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000894217 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000894217 920__ $$lyes
000894217 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000894217 980__ $$ajournal
000894217 980__ $$aVDB
000894217 980__ $$aUNRESTRICTED
000894217 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000894217 9801_ $$aFullTexts