| 001 | 894217 | ||
| 005 | 20210816204452.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.analchem.0c03379 |2 doi |
| 024 | 7 | _ | |a 0003-2700 |2 ISSN |
| 024 | 7 | _ | |a 0096-4484 |2 ISSN |
| 024 | 7 | _ | |a 1520-6882 |2 ISSN |
| 024 | 7 | _ | |a 1541-4655 |2 ISSN |
| 024 | 7 | _ | |a 2128/28388 |2 Handle |
| 024 | 7 | _ | |a altmetric:97079059 |2 altmetric |
| 024 | 7 | _ | |a 33393290 |2 pmid |
| 024 | 7 | _ | |a WOS:000618089100020 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-03106 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Wang, Liming |0 P:(DE-Juel1)167455 |b 0 |e First author |
| 245 | _ | _ | |a 18 O Isotope Labeling Combined with 31 P Nuclear Magnetic Resonance Spectroscopy for Accurate Quantification of Hydrolyzable Phosphorus Species in Environmental Samples |
| 260 | _ | _ | |a Columbus, Ohio |c 2021 |b American Chemical Society |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1627891352_15318 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a 31P nuclear magnetic resonance (NMR) spectra can be biased due to the hydrolysis of labile P species during sample treatment and NMR analysis. This paper offers an approach to circumvent this problem by performing sample preparation and analysis in 18O-enriched medium. Heavy 18O isotope atoms were introduced into the resulting artificial hydrolysis products. The NMR signal of 18O-labeled P was shifted upfield relative to the unlabeled P nuclei in natural metabolites. This isotope shift enabled an immediate differentiation of artificial hydrolysis products from natural metabolites. Moreover, the hydrolysis products could be accurately quantified. Our data suggest that the extent to which artificial hydrolysis alters NMR spectra varies among different types of environmental samples. For instance, 72–84% of the detected monoesters in the organic soils of this study were actually artificially hydrolyzed diesters. By contrast, artificial hydrolysis products in the mineral soils used for this study accounted for less than 6% of the total monoesters. Polyphosphate was also hydrolyzed to yield 18O-labeled products in algal biomass. |
| 536 | _ | _ | |a 2151 - Terrestrial ecosystems of the future (POF4-215) |0 G:(DE-HGF)POF4-2151 |c POF4-215 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Amelung, Wulf |0 P:(DE-Juel1)129427 |b 1 |u fzj |
| 700 | 1 | _ | |a Willbold, Sabine |0 P:(DE-Juel1)133857 |b 2 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1021/acs.analchem.0c03379 |g Vol. 93, no. 4, p. 2018 - 2025 |0 PERI:(DE-600)1483443-1 |n 4 |p 2018 - 2025 |t Analytical chemistry |v 93 |y 2021 |x 1520-6882 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/894217/files/acs.analchem.0c03379.pdf |
| 856 | 4 | _ | |y Published on 2021-01-03. Available in OpenAccess from 2022-01-03. |u https://juser.fz-juelich.de/record/894217/files/Manuscript%20File-1.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:894217 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)167455 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129427 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)133857 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-215 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Terrestrische Umwelt und Wasserressourcen: Dynamiken unter globalem Wandel und Klimawandel |9 G:(DE-HGF)POF4-2151 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANAL CHEM : 2019 |d 2021-01-29 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ANAL CHEM : 2019 |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-29 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-29 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ZEA-3-20090406 |k ZEA-3 |l Analytik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|