001     894217
005     20210816204452.0
024 7 _ |a 10.1021/acs.analchem.0c03379
|2 doi
024 7 _ |a 0003-2700
|2 ISSN
024 7 _ |a 0096-4484
|2 ISSN
024 7 _ |a 1520-6882
|2 ISSN
024 7 _ |a 1541-4655
|2 ISSN
024 7 _ |a 2128/28388
|2 Handle
024 7 _ |a altmetric:97079059
|2 altmetric
024 7 _ |a 33393290
|2 pmid
024 7 _ |a WOS:000618089100020
|2 WOS
037 _ _ |a FZJ-2021-03106
082 _ _ |a 540
100 1 _ |a Wang, Liming
|0 P:(DE-Juel1)167455
|b 0
|e First author
245 _ _ |a 18 O Isotope Labeling Combined with 31 P Nuclear Magnetic Resonance Spectroscopy for Accurate Quantification of Hydrolyzable Phosphorus Species in Environmental Samples
260 _ _ |a Columbus, Ohio
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1627891352_15318
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a 31P nuclear magnetic resonance (NMR) spectra can be biased due to the hydrolysis of labile P species during sample treatment and NMR analysis. This paper offers an approach to circumvent this problem by performing sample preparation and analysis in 18O-enriched medium. Heavy 18O isotope atoms were introduced into the resulting artificial hydrolysis products. The NMR signal of 18O-labeled P was shifted upfield relative to the unlabeled P nuclei in natural metabolites. This isotope shift enabled an immediate differentiation of artificial hydrolysis products from natural metabolites. Moreover, the hydrolysis products could be accurately quantified. Our data suggest that the extent to which artificial hydrolysis alters NMR spectra varies among different types of environmental samples. For instance, 72–84% of the detected monoesters in the organic soils of this study were actually artificially hydrolyzed diesters. By contrast, artificial hydrolysis products in the mineral soils used for this study accounted for less than 6% of the total monoesters. Polyphosphate was also hydrolyzed to yield 18O-labeled products in algal biomass.
536 _ _ |a 2151 - Terrestrial ecosystems of the future (POF4-215)
|0 G:(DE-HGF)POF4-2151
|c POF4-215
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 1
|u fzj
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.analchem.0c03379
|g Vol. 93, no. 4, p. 2018 - 2025
|0 PERI:(DE-600)1483443-1
|n 4
|p 2018 - 2025
|t Analytical chemistry
|v 93
|y 2021
|x 1520-6882
856 4 _ |u https://juser.fz-juelich.de/record/894217/files/acs.analchem.0c03379.pdf
856 4 _ |y Published on 2021-01-03. Available in OpenAccess from 2022-01-03.
|u https://juser.fz-juelich.de/record/894217/files/Manuscript%20File-1.pdf
909 C O |o oai:juser.fz-juelich.de:894217
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167455
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133857
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-215
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Terrestrische Umwelt und Wasserressourcen: Dynamiken unter globalem Wandel und Klimawandel
|9 G:(DE-HGF)POF4-2151
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL CHEM : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ANAL CHEM : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21