000894218 001__ 894218
000894218 005__ 20231124121945.0
000894218 0247_ $$2doi$$a10.1016/j.geoderma.2021.115103
000894218 0247_ $$2ISSN$$a0016-7061
000894218 0247_ $$2ISSN$$a1872-6259
000894218 0247_ $$2Handle$$a2128/28392
000894218 0247_ $$2WOS$$aWOS:000655075600012
000894218 037__ $$aFZJ-2021-03107
000894218 082__ $$a910
000894218 1001_ $$0P:(DE-Juel1)171362$$aZhang, Qian$$b0$$eCorresponding author
000894218 245__ $$aWater dispersible colloids and related nutrient availability in Amazonian Terra Preta soils
000894218 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000894218 3367_ $$2DRIVER$$aarticle
000894218 3367_ $$2DataCite$$aOutput Types/Journal article
000894218 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637846315_10843
000894218 3367_ $$2BibTeX$$aARTICLE
000894218 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894218 3367_ $$00$$2EndNote$$aJournal Article
000894218 520__ $$aAmazonian Dark Earths (or terra preta de índico) are known as highly fertile soils that can maintain elevated crop yields for centuries. While this fertility was frequently ascribed to the presence of black carbon, the availability and colloidal binding of major nutrients received limited attention. We examined the size distribution and the elemental compositions of water-dispersible colloids (WDC) in both forested and cultivated Terra Preta topsoils (0–10 cm, Anthrosols), as well as in their adjacent non-Terra Preta controls (Acrisols) via asymmetric flow field-flow fractionation (FFF). Liquid-state 31P-nuclear magnetic resonance (NMR) spectra, black carbon content, and scanning electron microscope (SEM) images were also obtained. We found that WDC in Terra Preta soils contained a significant proportion of organo-mineral associations in the size range 30–300 nm, whereas, in contrast, water-dispersible nanoparticles with a diameter < 30 nm were dominant in the adjacent Acrisols. The shifts to larger WDC sizes in the Terra Preta soils went along with elevated pH values, as well as with elevated contents of Si, Al, Fe, Ca and organic matter-containing particles. Also P concentrations were enriched in both the water-extractable phase (WEP) and WDC extracts of Terra Preta soils relative to the adjacent Acrisols. We assume that the higher pH values and Ca ion concentrations promoted the involvement of soil organic matter (SOM) into the formation of larger-sized colloids consisting of kaolinite-like clay minerals, iron oxides and Ca ions in the Terra Preta soils. The elevated content of Ca in Terra Preta soil colloids may also contribute to the retention of P, likely via bridging of anionic P like orthophosphate to SOM. Preventing soil acidification is thus not only to be recommended for Acrisols, but also for maintaining colloidal structures and related fertility in Terra Preta soils.
000894218 536__ $$0G:(DE-HGF)POF4-2151$$a2151 - Terrestrial ecosystems of the future (POF4-215)$$cPOF4-215$$fPOF IV$$x0
000894218 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000894218 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894218 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b1
000894218 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b2
000894218 7001_ $$0P:(DE-Juel1)159255$$aMissong, Anna$$b3
000894218 7001_ $$0P:(DE-HGF)0$$aSiemens, Jan$$b4
000894218 7001_ $$0P:(DE-HGF)0$$aMulder, Ines$$b5
000894218 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b6
000894218 7001_ $$0P:(DE-Juel1)186684$$aMüller, Christoph$$b7$$ufzj
000894218 7001_ $$0P:(DE-HGF)0$$aWestphal Muniz, Aleksander$$b8
000894218 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b9$$ufzj
000894218 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2021.115103$$gVol. 397, p. 115103 -$$p115103 -$$tGeoderma$$v397$$x0016-7061$$y2021
000894218 8564_ $$uhttps://juser.fz-juelich.de/record/894218/files/Revisedmanuscript_withoutlable_20210318.pdf$$yPublished on 2021-03-31. Available in OpenAccess from 2023-03-31.
000894218 8767_ $$d2023-10-20$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragt
000894218 909CO $$ooai:juser.fz-juelich.de:894218$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000894218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171362$$aForschungszentrum Jülich$$b0$$kFZJ
000894218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b1$$kFZJ
000894218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b2$$kFZJ
000894218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b6$$kFZJ
000894218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186684$$aForschungszentrum Jülich$$b7$$kFZJ
000894218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b9$$kFZJ
000894218 9131_ $$0G:(DE-HGF)POF4-215$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2151$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vTerrestrische Umwelt und Wasserressourcen: Dynamiken unter globalem Wandel und Klimawandel$$x0
000894218 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000894218 9141_ $$y2021
000894218 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000894218 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000894218 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894218 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2019$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000894218 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000894218 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000894218 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000894218 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000894218 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000894218 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000894218 920__ $$lyes
000894218 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000894218 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000894218 9801_ $$aFullTexts
000894218 980__ $$ajournal
000894218 980__ $$aVDB
000894218 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000894218 980__ $$aI:(DE-Juel1)IBG-3-20101118
000894218 980__ $$aUNRESTRICTED
000894218 980__ $$aAPC