000894219 001__ 894219
000894219 005__ 20240709081922.0
000894219 0247_ $$2doi$$a10.1016/j.molliq.2021.116964
000894219 0247_ $$2ISSN$$a0167-7322
000894219 0247_ $$2ISSN$$a1873-3166
000894219 0247_ $$2Handle$$a2128/28787
000894219 0247_ $$2WOS$$aWOS:000708689300025
000894219 037__ $$aFZJ-2021-03108
000894219 082__ $$a540
000894219 1001_ $$0P:(DE-Juel1)173951$$aLin, Jingjing$$b0$$ufzj
000894219 245__ $$aIonic (Proton) transport and molecular interaction of ionic Liquid–PBI blends for the use as electrolyte membranes
000894219 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000894219 3367_ $$2DRIVER$$aarticle
000894219 3367_ $$2DataCite$$aOutput Types/Journal article
000894219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640159697_8272
000894219 3367_ $$2BibTeX$$aARTICLE
000894219 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894219 3367_ $$00$$2EndNote$$aJournal Article
000894219 520__ $$aProtic ionic liquids (PILs) are discussed as new candidates for the use as non-aqueous electrolytes for fuel cells operating at temperatures above 80 °C. The molecular interactions in Diethylmethylammonium triflate ([Dema][TfO]) doped polybenzimidazole (PBI) blend membranes and the proton transport mechanism were investigated by means of TGA, IR and NMR. The mobility of the PIL ions is restricted to the PBI host polymer. The [Dema]+ cations and [TfO]− anions interact strongly via H bonds with the polar groups of the PBI chains. This will significantly confine the proton conductivity of the membrane to vehicular transport. The proton transport was investigated by comparing to an analogous liquid state model using the monomer benzimidazole (BIm) instead of the PBI polymer. During fuel cell operation, it is unavoidable that residual water is present in significant quantities. Resulting from 1H NMR and PFG self-diffusion measurements, proton transport in the liquid state model takes place via a cooperative mechanism involving all of the species NH[Dema]+/NHBIm/H2O depending on the water fraction. Thus, it is suggested that conductivity in the PIL–PBI membrane be mainly provided by the cooperative transport of the protons. This study is intended to broaden understanding of the structure and proton transport mechanism, as well as to give possible ways to optimize PIL electrolyte doped polymer blend membranes for intermediate operating temperatures.
000894219 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000894219 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894219 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b1
000894219 7001_ $$0P:(DE-HGF)0$$aZinkevich, Tatiana$$b2
000894219 7001_ $$0P:(DE-HGF)0$$aIndris, Sylvio$$b3
000894219 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b4$$eCorresponding author
000894219 773__ $$0PERI:(DE-600)1491496-7$$a10.1016/j.molliq.2021.116964$$gp. 116964 -$$p116964$$tJournal of molecular liquids$$v342$$x0167-7322$$y2021
000894219 8564_ $$uhttps://juser.fz-juelich.de/record/894219/files/revised%20manuscript%20%28text%20unmarked%29.docx$$yPublished on 2021-07-11. Available in OpenAccess from 2023-07-11.
000894219 909CO $$ooai:juser.fz-juelich.de:894219$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173951$$aForschungszentrum Jülich$$b0$$kFZJ
000894219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b1$$kFZJ
000894219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b4$$kFZJ
000894219 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000894219 9141_ $$y2021
000894219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000894219 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000894219 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894219 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL LIQ : 2019$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL LIQ : 2019$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000894219 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000894219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000894219 920__ $$lyes
000894219 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000894219 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000894219 9801_ $$aFullTexts
000894219 980__ $$ajournal
000894219 980__ $$aVDB
000894219 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000894219 980__ $$aI:(DE-Juel1)IEK-14-20191129
000894219 980__ $$aUNRESTRICTED
000894219 981__ $$aI:(DE-Juel1)IET-4-20191129