001     894219
005     20240709081922.0
024 7 _ |a 10.1016/j.molliq.2021.116964
|2 doi
024 7 _ |a 0167-7322
|2 ISSN
024 7 _ |a 1873-3166
|2 ISSN
024 7 _ |a 2128/28787
|2 Handle
024 7 _ |a WOS:000708689300025
|2 WOS
037 _ _ |a FZJ-2021-03108
082 _ _ |a 540
100 1 _ |a Lin, Jingjing
|0 P:(DE-Juel1)173951
|b 0
|u fzj
245 _ _ |a Ionic (Proton) transport and molecular interaction of ionic Liquid–PBI blends for the use as electrolyte membranes
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640159697_8272
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Protic ionic liquids (PILs) are discussed as new candidates for the use as non-aqueous electrolytes for fuel cells operating at temperatures above 80 °C. The molecular interactions in Diethylmethylammonium triflate ([Dema][TfO]) doped polybenzimidazole (PBI) blend membranes and the proton transport mechanism were investigated by means of TGA, IR and NMR. The mobility of the PIL ions is restricted to the PBI host polymer. The [Dema]+ cations and [TfO]− anions interact strongly via H bonds with the polar groups of the PBI chains. This will significantly confine the proton conductivity of the membrane to vehicular transport. The proton transport was investigated by comparing to an analogous liquid state model using the monomer benzimidazole (BIm) instead of the PBI polymer. During fuel cell operation, it is unavoidable that residual water is present in significant quantities. Resulting from 1H NMR and PFG self-diffusion measurements, proton transport in the liquid state model takes place via a cooperative mechanism involving all of the species NH[Dema]+/NHBIm/H2O depending on the water fraction. Thus, it is suggested that conductivity in the PIL–PBI membrane be mainly provided by the cooperative transport of the protons. This study is intended to broaden understanding of the structure and proton transport mechanism, as well as to give possible ways to optimize PIL electrolyte doped polymer blend membranes for intermediate operating temperatures.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 1
700 1 _ |a Zinkevich, Tatiana
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Indris, Sylvio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Korte, Carsten
|0 P:(DE-Juel1)140525
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.molliq.2021.116964
|g p. 116964 -
|0 PERI:(DE-600)1491496-7
|p 116964
|t Journal of molecular liquids
|v 342
|y 2021
|x 0167-7322
856 4 _ |u https://juser.fz-juelich.de/record/894219/files/revised%20manuscript%20%28text%20unmarked%29.docx
|y Published on 2021-07-11. Available in OpenAccess from 2023-07-11.
909 C O |o oai:juser.fz-juelich.de:894219
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)140525
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MOL LIQ : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL LIQ : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21