000894231 001__ 894231
000894231 005__ 20240712101028.0
000894231 0247_ $$2doi$$a10.5194/acp-21-5953-2021
000894231 0247_ $$2ISSN$$a1680-7316
000894231 0247_ $$2ISSN$$a1680-7324
000894231 0247_ $$2Handle$$a2128/28364
000894231 0247_ $$2altmetric$$aaltmetric:104364545
000894231 0247_ $$2WOS$$aWOS:000642401200002
000894231 037__ $$aFZJ-2021-03111
000894231 082__ $$a550
000894231 1001_ $$0P:(DE-Juel1)171435$$aBetancourt, Clara$$b0
000894231 245__ $$aFirewood residential heating – local versus remote influence on the aerosol burden
000894231 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000894231 3367_ $$2DRIVER$$aarticle
000894231 3367_ $$2DataCite$$aOutput Types/Journal article
000894231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627555408_29226
000894231 3367_ $$2BibTeX$$aARTICLE
000894231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894231 3367_ $$00$$2EndNote$$aJournal Article
000894231 520__ $$aWe report the first-time use of the Lagrangian particle dispersion model (LPDM) FLEXPART to simulate isotope ratios of the biomass burning tracer levoglucosan. Here, we combine the model results with observed levoglucosan concentrations and δ13C to assess the contribution of local vs. remote emissions from firewood domestic heating to the particulate matter sampled during the cold season at two measurements stations of the Environmental Agency of North Rhine-Westphalia, Germany.For the investigated samples, the simulations indicate that the largest part of the sampled aerosol is 1 to 2 d old and thus originates from local to regional sources. Consequently, ageing, also limited by the reduced photochemical activity in the dark cold season, has a minor influence on the observed levoglucosan concentration and δ13C. The retro plume ages agree well with those derived from observed δ13C (the “isotopic” ages), demonstrating that the limitation of backwards calculations to 7 d for this study does not introduce any significant bias. A linear regression analysis applied to the experimental levoglucosan δ13C vs. the inverse concentration confirms the young age of aerosol. The high variability in the observed δ13C implies that the local levoglucosan emissions are characterized by different isotopic ratios in the range of −26.3 ‰ to −21.3 ‰. These values are in good agreement with previous studies on levoglucosan source-specific isotopic composition in biomass burning aerosol. Comparison between measured and estimated levoglucosan concentrations suggests that emissions are underestimated by a factor of 2 on average. These findings demonstrate that the aerosol burden from home heating in residential areas is not of remote origin. In this work we show that combining Lagrangian modelling with isotope ratios is valuable to obtain additional insight into source apportionment. Error analysis shows that the largest source of uncertainty is limited information on isotope ratios of levoglucosan emissions. Based on the observed low extent of photochemical processing during the cold season, levoglucosan can be used under similar conditions as a conservative tracer without introducing substantial bias.
000894231 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000894231 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000894231 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894231 7001_ $$0P:(DE-Juel1)167368$$aKüppers, Christoph$$b1$$ufzj
000894231 7001_ $$0P:(DE-Juel1)151252$$aPiansawan, Tammarat$$b2
000894231 7001_ $$0P:(DE-HGF)0$$aSager, Uta$$b3
000894231 7001_ $$0P:(DE-HGF)0$$aHoyer, Andrea B.$$b4
000894231 7001_ $$0P:(DE-HGF)0$$aKaminski, Heinz$$b5
000894231 7001_ $$0P:(DE-HGF)0$$aRapp, Gerhard$$b6
000894231 7001_ $$0P:(DE-HGF)0$$aJohn, Astrid C.$$b7
000894231 7001_ $$0P:(DE-HGF)0$$aKüpper, Miriam$$b8
000894231 7001_ $$0P:(DE-HGF)0$$aQuass, Ulrich$$b9
000894231 7001_ $$0P:(DE-HGF)0$$aKuhlbusch, Thomas$$b10
000894231 7001_ $$0P:(DE-Juel1)172931$$aRudolph, Jochen$$b11
000894231 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b12
000894231 7001_ $$0P:(DE-Juel1)6110$$aGensch, Iulia$$b13$$eCorresponding author
000894231 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-5953-2021$$gVol. 21, no. 8, p. 5953 - 5964$$n8$$p5953 - 5964$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000894231 8564_ $$uhttps://juser.fz-juelich.de/record/894231/files/Invoice_101453.pdf
000894231 8564_ $$uhttps://juser.fz-juelich.de/record/894231/files/acp-21-5953-2021.pdf$$yOpenAccess
000894231 8767_ $$8101453$$92021-06-16$$d2021-08-13$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170623
000894231 909CO $$ooai:juser.fz-juelich.de:894231$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171435$$aForschungszentrum Jülich$$b0$$kFZJ
000894231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167368$$aForschungszentrum Jülich$$b1$$kFZJ
000894231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b12$$kFZJ
000894231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6110$$aForschungszentrum Jülich$$b13$$kFZJ
000894231 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000894231 9141_ $$y2021
000894231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894231 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894231 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894231 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894231 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1
000894231 9801_ $$aAPC
000894231 9801_ $$aFullTexts
000894231 980__ $$ajournal
000894231 980__ $$aVDB
000894231 980__ $$aUNRESTRICTED
000894231 980__ $$aI:(DE-Juel1)JSC-20090406
000894231 980__ $$aI:(DE-Juel1)IEK-8-20101013
000894231 980__ $$aAPC
000894231 981__ $$aI:(DE-Juel1)ICE-3-20101013