000894236 001__ 894236
000894236 005__ 20220930130322.0
000894236 0247_ $$2doi$$a10.3390/ijms22115933
000894236 0247_ $$2ISSN$$a1422-0067
000894236 0247_ $$2ISSN$$a1661-6596
000894236 0247_ $$2Handle$$a2128/29701
000894236 0247_ $$2altmetric$$aaltmetric:106802723
000894236 0247_ $$2pmid$$a34072989
000894236 0247_ $$2WOS$$aWOS:000660135300001
000894236 037__ $$aFZJ-2021-03116
000894236 082__ $$a540
000894236 1001_ $$0P:(DE-Juel1)165798$$aGushchin, Ivan$$b0
000894236 245__ $$aNitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity
000894236 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2021
000894236 3367_ $$2DRIVER$$aarticle
000894236 3367_ $$2DataCite$$aOutput Types/Journal article
000894236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640941855_14773
000894236 3367_ $$2BibTeX$$aARTICLE
000894236 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894236 3367_ $$00$$2EndNote$$aJournal Article
000894236 520__ $$aUnder anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
000894236 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000894236 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894236 7001_ $$0P:(DE-HGF)0$$aAleksenko, Vladimir A.$$b1
000894236 7001_ $$00000-0003-4078-4762$$aOrekhov, Philipp$$b2
000894236 7001_ $$0P:(DE-HGF)0$$aGoncharov, Ivan M.$$b3
000894236 7001_ $$0P:(DE-HGF)0$$aNazarenko, Vera V.$$b4
000894236 7001_ $$00000-0001-9470-0013$$aSemenov, Oleg$$b5
000894236 7001_ $$0P:(DE-HGF)0$$aRemeeva, Alina$$b6
000894236 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b7$$eCorresponding author$$ufzj
000894236 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms22115933$$gVol. 22, no. 11, p. 5933 -$$n11$$p5933 -$$tInternational journal of molecular sciences$$v22$$x1422-0067$$y2021
000894236 8564_ $$uhttps://juser.fz-juelich.de/record/894236/files/Invoice_101453.pdf
000894236 8564_ $$uhttps://juser.fz-juelich.de/record/894236/files/ijms-22-05933-v2.pdf$$yOpenAccess
000894236 8767_ $$8101453$$92021-06-16$$d2021-08-13$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170623
000894236 909CO $$ooai:juser.fz-juelich.de:894236$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000894236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b7$$kFZJ
000894236 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000894236 9141_ $$y2021
000894236 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894236 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894236 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2019$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894236 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000894236 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894236 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000894236 980__ $$ajournal
000894236 980__ $$aVDB
000894236 980__ $$aUNRESTRICTED
000894236 980__ $$aI:(DE-Juel1)IBI-7-20200312
000894236 980__ $$aAPC
000894236 9801_ $$aAPC
000894236 9801_ $$aFullTexts