000894237 001__ 894237
000894237 005__ 20240712101028.0
000894237 0247_ $$2doi$$a10.5194/acp-21-10799-2021
000894237 0247_ $$2ISSN$$a1680-7316
000894237 0247_ $$2ISSN$$a1680-7324
000894237 0247_ $$2Handle$$a2128/28942
000894237 0247_ $$2altmetric$$aaltmetric:109632301
000894237 0247_ $$2WOS$$aWOS:000674782200002
000894237 037__ $$aFZJ-2021-03117
000894237 082__ $$a550
000894237 1001_ $$0P:(DE-Juel1)173991$$aWu, Rongrong$$b0$$eCorresponding author
000894237 245__ $$aMolecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical
000894237 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000894237 3367_ $$2DRIVER$$aarticle
000894237 3367_ $$2DataCite$$aOutput Types/Journal article
000894237 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636384840_22225
000894237 3367_ $$2BibTeX$$aARTICLE
000894237 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894237 3367_ $$00$$2EndNote$$aJournal Article
000894237 520__ $$aIsoprene oxidation by nitrate radical (NO3) is a potentially important source of secondary organic aerosol (SOA). It is suggested that the second or later-generation products are the more substantial contributors to SOA. However, there are few studies investigating the multi-generation chemistry of isoprene-NO3 reaction, and information about the volatility of different isoprene nitrates, which is essential to evaluate their potential to form SOA and determine their atmospheric fate, is rare. In this work, we studied the reaction between isoprene and NO3 in the SAPHIR chamber (Jülich) under near-atmospheric conditions. Various oxidation products were measured by a high-resolution time-of-flight chemical ionization mass spectrometer using Br− as the reagent ion. Most of the products detected are organic nitrates, and they are grouped into monomers (C4 and C5 products) and dimers (C10 products) with 1–3 nitrate groups according to their chemical composition. Most of the observed products match expected termination products observed in previous studies, but some compounds such as monomers and dimers with three nitrogen atoms were rarely reported in the literature as gas-phase products from isoprene oxidation by NO3. Possible formation mechanisms for these compounds are proposed. The multi-generation chemistry of isoprene and NO3 is characterized by taking advantage of the time behavior of different products. In addition, the vapor pressures of diverse isoprene nitrates are calculated by different parametrization methods. An estimation of the vapor pressure is also derived from their condensation behavior. According to our results, isoprene monomers belong to intermediate-volatility or semi-volatile organic compounds and thus have little effect on SOA formation. In contrast, the dimers are expected to have low or extremely low volatility, indicating that they are potentially substantial contributors to SOA. However, the monomers constitute 80 % of the total explained signals on average, while the dimers contribute less than 2 %, suggesting that the contribution of isoprene NO3 oxidation to SOA by condensation should be low under atmospheric conditions. We expect a SOA mass yield of about 5 % from the wall-loss- and dilution-corrected mass concentrations, assuming that all of the isoprene dimers in the low- or extremely low-volatility organic compound (LVOC or ELVOC) range will condense completely.
000894237 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000894237 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894237 7001_ $$0P:(DE-Juel1)167140$$aVereecken, Luc$$b1
000894237 7001_ $$00000-0002-5100-0858$$aTsiligiannis, Epameinondas$$b2
000894237 7001_ $$0P:(DE-Juel1)169671$$aKang, Sungah$$b3
000894237 7001_ $$0P:(DE-Juel1)169780$$aAlbrecht, Sascha R.$$b4
000894237 7001_ $$0P:(DE-Juel1)176215$$aHantschke, Luisa$$b5
000894237 7001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b6
000894237 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b7
000894237 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b8
000894237 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b9
000894237 7001_ $$0P:(DE-Juel1)161442$$aHohaus, Thorsten$$b10
000894237 7001_ $$0P:(DE-Juel1)178087$$aCarlsson, Philip T. M.$$b11
000894237 7001_ $$0P:(DE-HGF)0$$aShenolikar, Justin$$b12
000894237 7001_ $$0P:(DE-HGF)0$$aBernard, François$$b13
000894237 7001_ $$00000-0001-8669-0230$$aCrowley, John N.$$b14
000894237 7001_ $$0P:(DE-HGF)0$$aFry, Juliane L.$$b15
000894237 7001_ $$0P:(DE-HGF)0$$aBrownwood, Bellamy$$b16
000894237 7001_ $$0P:(DE-HGF)0$$aThornton, Joel A.$$b17
000894237 7001_ $$0P:(DE-HGF)0$$aBrown, Steven S.$$b18
000894237 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b19
000894237 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b20
000894237 7001_ $$00000-0001-5691-1231$$aHallquist, Mattias$$b21
000894237 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b22
000894237 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-10799-2021$$gVol. 21, no. 13, p. 10799 - 10824$$n13$$p10799 - 10824$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000894237 8564_ $$uhttps://juser.fz-juelich.de/record/894237/files/Invoice_101523.pdf
000894237 8564_ $$uhttps://juser.fz-juelich.de/record/894237/files/acp-21-10799-2021.pdf$$yOpenAccess
000894237 8767_ $$8101523$$92021-07-08$$d2021-08-10$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170536
000894237 909CO $$ooai:juser.fz-juelich.de:894237$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173991$$aForschungszentrum Jülich$$b0$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b1$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169671$$aForschungszentrum Jülich$$b3$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176215$$aForschungszentrum Jülich$$b5$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b7$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b8$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b9$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161442$$aForschungszentrum Jülich$$b10$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178087$$aForschungszentrum Jülich$$b11$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b19$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b20$$kFZJ
000894237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b22$$kFZJ
000894237 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000894237 9141_ $$y2021
000894237 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894237 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894237 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894237 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894237 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894237 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000894237 9801_ $$aAPC
000894237 9801_ $$aFullTexts
000894237 980__ $$ajournal
000894237 980__ $$aVDB
000894237 980__ $$aUNRESTRICTED
000894237 980__ $$aI:(DE-Juel1)IEK-8-20101013
000894237 980__ $$aAPC
000894237 981__ $$aI:(DE-Juel1)ICE-3-20101013