000894240 001__ 894240
000894240 005__ 20240712101028.0
000894240 0247_ $$2doi$$a10.1038/s41586-021-03462-x
000894240 0247_ $$2ISSN$$a0028-0836
000894240 0247_ $$2ISSN$$a1476-4687
000894240 0247_ $$2Handle$$a2128/28356
000894240 0247_ $$2altmetric$$aaltmetric:105763244
000894240 0247_ $$2pmid$$a33981052
000894240 0247_ $$2WOS$$aWOS:000649848600015
000894240 037__ $$aFZJ-2021-03120
000894240 082__ $$a500
000894240 1001_ $$0P:(DE-Juel1)168550$$aFranco, B.$$b0$$eCorresponding author
000894240 245__ $$aUbiquitous atmospheric production of organic acids mediated by cloud droplets
000894240 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2021
000894240 3367_ $$2DRIVER$$aarticle
000894240 3367_ $$2DataCite$$aOutput Types/Journal article
000894240 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627550151_30428
000894240 3367_ $$2BibTeX$$aARTICLE
000894240 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894240 3367_ $$00$$2EndNote$$aJournal Article
000894240 520__ $$aAtmospheric acidity is increasingly determined by carbon dioxide and organic acids1,2,3. Among the latter, formic acid facilitates the nucleation of cloud droplets4 and contributes to the acidity of clouds and rainwater1,5. At present, chemistry–climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood2,6,7,8,9. Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry–climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.
000894240 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000894240 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894240 7001_ $$00000-0003-4005-900X$$aBlumenstock, T.$$b1
000894240 7001_ $$0P:(DE-Juel1)174162$$aCho, C.$$b2$$ufzj
000894240 7001_ $$00000-0002-8805-2141$$aClarisse, L.$$b3
000894240 7001_ $$00000-0003-0394-7200$$aClerbaux, C.$$b4
000894240 7001_ $$0P:(DE-HGF)0$$aCoheur, P.-F.$$b5
000894240 7001_ $$0P:(DE-HGF)0$$aDe Mazière, M.$$b6
000894240 7001_ $$0P:(DE-HGF)0$$aDe Smedt, I.$$b7
000894240 7001_ $$0P:(DE-Juel1)16317$$aDorn, H.-P.$$b8
000894240 7001_ $$0P:(DE-Juel1)174161$$aEmmerichs, T.$$b9
000894240 7001_ $$0P:(DE-Juel1)7363$$aFuchs, H.$$b10
000894240 7001_ $$0P:(DE-Juel1)184937$$aGkatzelis, Georgios$$b11$$ufzj
000894240 7001_ $$00000-0002-7986-1924$$aGriffith, D. W. T.$$b12
000894240 7001_ $$0P:(DE-HGF)0$$aGromov, S.$$b13
000894240 7001_ $$00000-0002-4269-1677$$aHannigan, J. W.$$b14
000894240 7001_ $$0P:(DE-HGF)0$$aHase, F.$$b15
000894240 7001_ $$0P:(DE-Juel1)161442$$aHohaus, T.$$b16
000894240 7001_ $$0P:(DE-HGF)0$$aJones, N.$$b17
000894240 7001_ $$0P:(DE-Juel1)180121$$aKerkweg, A.$$b18$$ufzj
000894240 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b19
000894240 7001_ $$00000-0001-5072-0979$$aLutsch, E.$$b20
000894240 7001_ $$00000-0002-5251-0286$$aMahieu, E.$$b21
000894240 7001_ $$0P:(DE-Juel1)166537$$aNovelli, A.$$b22$$ufzj
000894240 7001_ $$00000-0002-0067-617X$$aOrtega, I.$$b23
000894240 7001_ $$00000-0003-1156-4138$$aPaton-Walsh, C.$$b24
000894240 7001_ $$0P:(DE-HGF)0$$aPommier, M.$$b25
000894240 7001_ $$00000-0003-2440-6104$$aPozzer, A.$$b26
000894240 7001_ $$0P:(DE-Juel1)171432$$aReimer, D.$$b27$$ufzj
000894240 7001_ $$0P:(DE-Juel1)173788$$aRosanka, S.$$b28
000894240 7001_ $$0P:(DE-HGF)0$$aSander, R.$$b29
000894240 7001_ $$0P:(DE-HGF)0$$aSchneider, M.$$b30
000894240 7001_ $$00000-0001-9947-1053$$aStrong, K.$$b31
000894240 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b32$$ufzj
000894240 7001_ $$0P:(DE-HGF)0$$aVan Roozendael, M.$$b33
000894240 7001_ $$0P:(DE-Juel1)167140$$aVereecken, L.$$b34
000894240 7001_ $$0P:(DE-HGF)0$$aVigouroux, C.$$b35
000894240 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b36
000894240 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, D.$$b37$$eCorresponding author
000894240 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-021-03462-x$$gVol. 593, no. 7858, p. 233 - 237$$n7858$$p233 - 237$$tNature <London>$$v593$$x1476-4687$$y2021
000894240 8564_ $$uhttps://juser.fz-juelich.de/record/894240/files/s41586-021-03462-x.pdf$$yOpenAccess
000894240 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000894240 909CO $$ooai:juser.fz-juelich.de:894240$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174162$$aForschungszentrum Jülich$$b2$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich$$b8$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174161$$aForschungszentrum Jülich$$b9$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b10$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184937$$aForschungszentrum Jülich$$b11$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161442$$aForschungszentrum Jülich$$b16$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180121$$aForschungszentrum Jülich$$b18$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b19$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b22$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171432$$aForschungszentrum Jülich$$b27$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b28$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b32$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b34$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b36$$kFZJ
000894240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b37$$kFZJ
000894240 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000894240 9141_ $$y2021
000894240 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNATURE : 2019$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2019$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894240 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27
000894240 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000894240 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894240 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000894240 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000894240 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000894240 9801_ $$aFullTexts
000894240 980__ $$ajournal
000894240 980__ $$aVDB
000894240 980__ $$aUNRESTRICTED
000894240 980__ $$aI:(DE-Juel1)IEK-8-20101013
000894240 980__ $$aAPC
000894240 981__ $$aI:(DE-Juel1)ICE-3-20101013