001     894241
005     20240712101028.0
024 7 _ |a 10.1029/2020GL091351
|2 doi
024 7 _ |a 0094-8276
|2 ISSN
024 7 _ |a 1944-8007
|2 ISSN
024 7 _ |a 2128/28357
|2 Handle
024 7 _ |a altmetric:102982848
|2 altmetric
024 7 _ |a WOS:000672324900019
|2 WOS
037 _ _ |a FZJ-2021-03121
082 _ _ |a 550
100 1 _ |a Gkatzelis, Georgios
|0 P:(DE-Juel1)184937
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Uptake of Water‐soluble Gas‐phase Oxidation Products Drives Organic Particulate Pollution in Beijing
260 _ _ |a Hoboken, NJ
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1656320128_28127
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite the recent decrease in pollution events in Chinese urban areas, the World Health Organization air quality guideline values are still exceeded. Observations from monitoring networks show a stronger decrease of organic aerosol directly emitted to the atmosphere relative to secondary organic aerosol (SOA) generated from oxidation processes. Here, the uptake of water-soluble gas-phase oxidation products is reported as a major SOA contribution to particulate pollution in Beijing, triggered by the increase of aerosol liquid water. In pollution episodes, this pathway is enough to explain the increase in SOA mass, with formaldehyde, acetaldehyde, glycolaldehyde, formic acid, and acetic acid alone explaining 15%–25% of the SOA increase. Future mitigation strategies to reduce non-methane volatile organic compound emissions should be considered to reduce organic particulate pollution in China.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Papanastasiou, Dimitrios K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Karydis, Vlassis A.
|0 P:(DE-Juel1)176592
|b 2
700 1 _ |a Hohaus, Thorsten
|0 P:(DE-Juel1)161442
|b 3
700 1 _ |a Liu, Ying
|0 P:(DE-Juel1)165976
|b 4
700 1 _ |a Schmitt, Sebastian H.
|0 P:(DE-Juel1)161557
|b 5
700 1 _ |a Schlag, Patrick
|0 P:(DE-Juel1)4548
|b 6
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 7
|u fzj
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 8
700 1 _ |a Chen, Qi
|0 P:(DE-Juel1)180599
|b 9
|u fzj
700 1 _ |a Cheng, Xi
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Broch, Sebastian
|0 P:(DE-Juel1)7591
|b 11
700 1 _ |a Dong, Huabin
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Holland, Frank
|0 P:(DE-Juel1)16342
|b 13
|u fzj
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 14
|u fzj
700 1 _ |a Liu, Yuhan
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Ma, Xuefei
|0 P:(DE-Juel1)168298
|b 16
700 1 _ |a Reimer, David
|0 P:(DE-Juel1)171432
|b 17
|u fzj
700 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 18
|u fzj
700 1 _ |a Shao, Min
|0 0000-0001-6518-4873
|b 19
700 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)173726
|b 20
|u fzj
700 1 _ |a Taraborrelli, Domenico
|0 P:(DE-Juel1)167439
|b 21
700 1 _ |a Tillmann, Ralf
|0 P:(DE-Juel1)5344
|b 22
|u fzj
700 1 _ |a Wang, Haichao
|0 0000-0001-6161-1874
|b 23
700 1 _ |a Wang, Yu
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Wu, Yusheng
|0 0000-0001-7548-8272
|b 25
700 1 _ |a Wu, Zhijun
|0 0000-0002-7705-2373
|b 26
700 1 _ |a Zeng, Limin
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Zheng, Jun
|0 0000-0001-6225-6130
|b 28
700 1 _ |a Hu, Min
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Lu, Keding
|0 P:(DE-Juel1)6776
|b 30
700 1 _ |a Hofzumahaus, Andreas
|0 P:(DE-Juel1)16326
|b 31
700 1 _ |a Zhang, Yuanhang
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 33
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 34
773 _ _ |a 10.1029/2020GL091351
|g Vol. 48, no. 8
|0 PERI:(DE-600)2021599-X
|n 8
|p e2020GL091351
|t Geophysical research letters
|v 48
|y 2021
|x 1944-8007
856 4 _ |u https://juser.fz-juelich.de/record/894241/files/Invoice_6560227.pdf
856 4 _ |u https://juser.fz-juelich.de/record/894241/files/2020GL091351.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894241
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184937
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176592
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180599
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)171432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)173726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)167439
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 31
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 33
|6 P:(DE-Juel1)16324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 34
|6 P:(DE-Juel1)4528
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYS RES LETT : 2019
|d 2021-01-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21