Hauptseite > Publikationsdatenbank > High‐throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought > print |
001 | 894254 | ||
005 | 20230922204935.0 | ||
024 | 7 | _ | |a 10.1111/pce.14136 |2 doi |
024 | 7 | _ | |a 0140-7791 |2 ISSN |
024 | 7 | _ | |a 1365-3040 |2 ISSN |
024 | 7 | _ | |a 2128/28635 |2 Handle |
024 | 7 | _ | |a altmetric:108464388 |2 altmetric |
024 | 7 | _ | |a pmid:34189744 |2 pmid |
024 | 7 | _ | |a WOS:000671547500001 |2 WOS |
037 | _ | _ | |a FZJ-2021-03129 |
041 | _ | _ | |a English |
082 | _ | _ | |a 580 |
100 | 1 | _ | |a Zendonadi dos Santos, Nícolas |0 P:(DE-Juel1)173970 |b 0 |e Corresponding author |
245 | _ | _ | |a High‐throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought |
260 | _ | _ | |a Oxford [u.a.] |c 2021 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1695208653_10172 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II (urn:x-wiley:01407791:media:pce14136:pce14136-math-0072) and the kinetics of electron transport measured by reoxidation rates (urn:x-wiley:01407791:media:pce14136:pce14136-math-0073 and urn:x-wiley:01407791:media:pce14136:pce14136-math-0074). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, urn:x-wiley:01407791:media:pce14136:pce14136-math-0075 and urn:x-wiley:01407791:media:pce14136:pce14136-math-0076 were little affected, while urn:x-wiley:01407791:media:pce14136:pce14136-math-0077 was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis. |
536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Piepho, Hans-Peter |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Condorelli, Giuseppe Emanuele |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Licieri Groli, Eder |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Newcomb, Maria |0 0000-0003-2974-9149 |b 4 |
700 | 1 | _ | |a Ward, Richard |0 0000-0003-4436-0019 |b 5 |
700 | 1 | _ | |a Tuberosa, Roberto |0 0000-0001-9143-9569 |b 6 |
700 | 1 | _ | |a Maccaferri, Marco |0 0000-0002-1935-3282 |b 7 |
700 | 1 | _ | |a Fiorani, Fabio |0 P:(DE-Juel1)143649 |b 8 |
700 | 1 | _ | |a Rascher, Uwe |0 P:(DE-Juel1)129388 |b 9 |
700 | 1 | _ | |a Muller, Onno |0 P:(DE-Juel1)161185 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1111/pce.14136 |g p. pce.14136 |0 PERI:(DE-600)2020843-1 |n 9 |p 2858-2878 |t Plant, cell & environment |v 44 |y 2021 |x 1365-3040 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894254/files/Invoice_7620670.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894254/files/pce.14136-1.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894254 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173970 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)143649 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129388 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)161185 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT CELL ENVIRON : 2019 |d 2021-01-30 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT CELL ENVIRON : 2019 |d 2021-01-30 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|