000894255 001__ 894255
000894255 005__ 20240712084521.0
000894255 0247_ $$2doi$$a10.1002/aenm.202101474
000894255 0247_ $$2ISSN$$a1614-6832
000894255 0247_ $$2ISSN$$a1614-6840
000894255 0247_ $$2Handle$$a2128/28621
000894255 0247_ $$2altmetric$$aaltmetric:110253165
000894255 0247_ $$2WOS$$aWOS:000675294100001
000894255 037__ $$aFZJ-2021-03130
000894255 082__ $$a050
000894255 1001_ $$0P:(DE-Juel1)176482$$aLübke, Dana$$b0
000894255 245__ $$aComparing and Quantifying Indoor Performance of Organic Solar Cells
000894255 260__ $$aWeinheim$$bWiley-VCH$$c2021
000894255 3367_ $$2DRIVER$$aarticle
000894255 3367_ $$2DataCite$$aOutput Types/Journal article
000894255 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652434478_5820
000894255 3367_ $$2BibTeX$$aARTICLE
000894255 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894255 3367_ $$00$$2EndNote$$aJournal Article
000894255 500__ $$aWe acknowledge funding for the project Enerscale from the state Nordrhein-Westfalen and the European Union (via the European Fonds for Regional Development). Furthermore, we acknowlege funding from the Helmholtz Association.
000894255 520__ $$aWith increasing efficiencies of non-fullerene acceptor-based organic solar cells, thin-film technology is becoming a promising candidate for indoor light harvesting applications. However, the lack of standardized comparison methods makes it difficult to quantify progress and to compare indoor performance. Herein, a simple method to calculate the efficiency of solar cells under any possible light source and illuminance with only using simple standard measurements (current–voltage curves and quantum efficiency) is presented. Thereby, equal evaluation conditions are ensured, so that indoor solar cells can be ranked and compared according to their efficiency. Efficiencies are shown to typically vary by ±20% when using different different light emitting diode spectra with color temperatures ranging from 2700 to 6500 K. Calculations based on a detailed balance model indicate that the optimal bandgap of the absorber material depends on the used light source and ranges between 1.75 and 2 eV. The approach is validated by comparison with literature data and many calculated efficiencies match well with experimental data obtained with a specific light source. However, some reported efficiencies cannot be reproduced with the model, which highlights the need to reassess low light measuring techniques. Furthermore, a script is provided for use by the community.
000894255 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000894255 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894255 7001_ $$0P:(DE-Juel1)180703$$aHartnagel, Paula$$b1
000894255 7001_ $$0P:(DE-HGF)0$$aAngona, Johanna$$b2
000894255 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b3$$eCorresponding author
000894255 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202101474$$gp. 2101474 -$$n34$$p2101474$$tAdvanced energy materials$$v11$$x1614-6840$$y2021
000894255 8564_ $$uhttps://juser.fz-juelich.de/record/894255/files/L%C3%BCbke_lowlightefficiencies__forHomepage.pdf$$yOpenAccess
000894255 8564_ $$uhttps://juser.fz-juelich.de/record/894255/files/aenm.202101474.pdf$$yOpenAccess
000894255 8767_ $$d2021-07-30$$eHybrid-OA$$jDEAL
000894255 909CO $$ooai:juser.fz-juelich.de:894255$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000894255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176482$$aForschungszentrum Jülich$$b0$$kFZJ
000894255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180703$$aForschungszentrum Jülich$$b1$$kFZJ
000894255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b3$$kFZJ
000894255 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000894255 9141_ $$y2021
000894255 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000894255 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894255 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2019$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000894255 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2019$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894255 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894255 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894255 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000894255 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000894255 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000894255 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000894255 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000894255 9801_ $$aAPC
000894255 9801_ $$aFullTexts
000894255 980__ $$ajournal
000894255 980__ $$aVDB
000894255 980__ $$aUNRESTRICTED
000894255 980__ $$aI:(DE-Juel1)IEK-5-20101013
000894255 980__ $$aAPC
000894255 981__ $$aI:(DE-Juel1)IMD-3-20101013