001     894255
005     20240712084521.0
024 7 _ |a 10.1002/aenm.202101474
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/28621
|2 Handle
024 7 _ |a altmetric:110253165
|2 altmetric
024 7 _ |a WOS:000675294100001
|2 WOS
037 _ _ |a FZJ-2021-03130
082 _ _ |a 050
100 1 _ |a Lübke, Dana
|0 P:(DE-Juel1)176482
|b 0
245 _ _ |a Comparing and Quantifying Indoor Performance of Organic Solar Cells
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652434478_5820
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a We acknowledge funding for the project Enerscale from the state Nordrhein-Westfalen and the European Union (via the European Fonds for Regional Development). Furthermore, we acknowlege funding from the Helmholtz Association.
520 _ _ |a With increasing efficiencies of non-fullerene acceptor-based organic solar cells, thin-film technology is becoming a promising candidate for indoor light harvesting applications. However, the lack of standardized comparison methods makes it difficult to quantify progress and to compare indoor performance. Herein, a simple method to calculate the efficiency of solar cells under any possible light source and illuminance with only using simple standard measurements (current–voltage curves and quantum efficiency) is presented. Thereby, equal evaluation conditions are ensured, so that indoor solar cells can be ranked and compared according to their efficiency. Efficiencies are shown to typically vary by ±20% when using different different light emitting diode spectra with color temperatures ranging from 2700 to 6500 K. Calculations based on a detailed balance model indicate that the optimal bandgap of the absorber material depends on the used light source and ranges between 1.75 and 2 eV. The approach is validated by comparison with literature data and many calculated efficiencies match well with experimental data obtained with a specific light source. However, some reported efficiencies cannot be reproduced with the model, which highlights the need to reassess low light measuring techniques. Furthermore, a script is provided for use by the community.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hartnagel, Paula
|0 P:(DE-Juel1)180703
|b 1
700 1 _ |a Angona, Johanna
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 3
|e Corresponding author
773 _ _ |a 10.1002/aenm.202101474
|g p. 2101474 -
|0 PERI:(DE-600)2594556-7
|n 34
|p 2101474
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6840
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894255/files/L%C3%BCbke_lowlightefficiencies__forHomepage.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894255/files/aenm.202101474.pdf
909 C O |o oai:juser.fz-juelich.de:894255
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176482
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180703
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21