000894258 001__ 894258
000894258 005__ 20240712084521.0
000894258 0247_ $$2doi$$a10.1557/s43578-021-00155-z
000894258 0247_ $$2ISSN$$a0884-1616
000894258 0247_ $$2ISSN$$a0884-2914
000894258 0247_ $$2ISSN$$a2044-5326
000894258 0247_ $$2Handle$$a2128/28367
000894258 0247_ $$2altmetric$$aaltmetric:103036414
000894258 0247_ $$2WOS$$aWOS:000635073400001
000894258 037__ $$aFZJ-2021-03133
000894258 082__ $$a670
000894258 1001_ $$0P:(DE-HGF)0$$aÜnlü, Feray$$b0
000894258 245__ $$aSingle- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?
000894258 260__ $$aCambridge [u.a.]$$bCambridge Univ. Press$$c2021
000894258 3367_ $$2DRIVER$$aarticle
000894258 3367_ $$2DataCite$$aOutput Types/Journal article
000894258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627632737_16162
000894258 3367_ $$2BibTeX$$aARTICLE
000894258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894258 3367_ $$00$$2EndNote$$aJournal Article
000894258 520__ $$aInvestigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A3Bi2I9) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH3NH3+ (methylammonium, MA+) in MA3Bi2I9 with various organic cations such as CH(NH2)2+ (formamidinium, FA+), (CH3)2NH2+ (dimethylammonium, DMA+), C(NH2)3+ (guanidinium, GA+) and inorganic cations such as cesium (Cs+), rubidium (Rb+), potassium (K+), sodium (Na+) and lithium (Li+) and (2) partially replacing MA+ with Cs+ in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance.
000894258 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000894258 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894258 7001_ $$0P:(DE-Juel1)180881$$aKulkarni, Ashish$$b1$$ufzj
000894258 7001_ $$0P:(DE-HGF)0$$aLê, Khan$$b2
000894258 7001_ $$0P:(DE-HGF)0$$aBohr, Christoph$$b3
000894258 7001_ $$0P:(DE-HGF)0$$aBliesener, Andrea$$b4
000894258 7001_ $$0P:(DE-HGF)0$$aÖz, Seren Dilara$$b5
000894258 7001_ $$0P:(DE-HGF)0$$aJena, Ajay Kumar$$b6
000894258 7001_ $$0P:(DE-HGF)0$$aAndo, Yoichi$$b7
000894258 7001_ $$0P:(DE-HGF)0$$aMiyasaka, Tsutomu$$b8
000894258 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b9$$ufzj
000894258 7001_ $$0P:(DE-HGF)0$$aMathur, Sanjay$$b10$$eCorresponding author
000894258 773__ $$0PERI:(DE-600)2015297-8$$a10.1557/s43578-021-00155-z$$gVol. 36, no. 9, p. 1794 - 1804$$n9$$p1794 - 1804$$tJournal of materials research$$v36$$x2044-5326$$y2021
000894258 8564_ $$uhttps://juser.fz-juelich.de/record/894258/files/%C3%BCnl%C3%BC21jmr.pdf$$yOpenAccess
000894258 909CO $$ooai:juser.fz-juelich.de:894258$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180881$$aForschungszentrum Jülich$$b1$$kFZJ
000894258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b9$$kFZJ
000894258 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000894258 9141_ $$y2021
000894258 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000894258 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894258 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES : 2019$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-03$$wger
000894258 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000894258 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000894258 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000894258 920__ $$lyes
000894258 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000894258 9801_ $$aFullTexts
000894258 980__ $$ajournal
000894258 980__ $$aVDB
000894258 980__ $$aUNRESTRICTED
000894258 980__ $$aI:(DE-Juel1)IEK-5-20101013
000894258 981__ $$aI:(DE-Juel1)IMD-3-20101013