001     894265
005     20240313094852.0
037 _ _ |a FZJ-2021-03140
100 1 _ |a Pronold, Jari
|0 P:(DE-Juel1)165321
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 30th Annual Computational Neuroscience Meeting. CNS*2021
|c Online
|d 2021-07-03 - 2021-07-07
|w USA
245 _ _ |a Multi-scale spiking network model of human cortex
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1628511175_32499
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a AbstractIs our current knowledge about the structural connectivity of the brain compatible with the measured activity? Using a large-scale spiking network model of leaky integrate-and-fire neurons to achieve simulations with the full neuron and synapse density, we previously answered this question in the affirmative for macaque cortex [1,2]. Here, we apply the same framework to investigate human cortex. Concretely, we present a large-scale spiking network model that relates the cortical network structure to the resting-state activity of neurons, populations, layers, and areas.The construction of the model is based on the integration of data on cortical architecture, single-cell properties, and local and cortico-cortical connectivity into a consistent multi-scale framework. It predicts connection probabilities between any two neurons based on their types and locations within areas and layers. Every area is represented by a 1 mm² microcircuit with area-specific architecture and the full density of neurons and synapses. The cortical architecture in terms of laminar thicknesses and neuron densities is taken from the von Economo and Koskinas atlas [3] and enriched with more detailed data extracted from the BigBrain atlas [4]. While connectivity on the area level is informed by DTI data [5], it is necessary to complement this with predictions on laminar connectivity patterns. We rely on predictive connectomics based on macaque data which express regularities of laminar connectivity patterns as a function of cortical architecture. The local connectivity uses the model by Potjans and Diesmann [6] as a blueprint and is scaled according to the cytoarchitectonic data. Analysis of human neuron morphologies provides synapse-to-soma mappings based on layer- and cell-type-specific dendritic lengths [7]. The model contains roughly 4 million neurons and 50 billion synapses and is simulated on a supercomputer using the NEST simulator.While the available data constrain the parameter space to some extent, the model remains underdetermined. Mean-field theory guides the exploration of the parameter space in search for a low-rate asynchronous irregular state that generates substantial inter-area interactions through cortico-cortical weights that poise the network at the edge of stability. Different realizations of the model are assessed via comparison with experimental data. The simulated functional connectivity is compared with experimental resting-state fMRI data. Furthermore, simulated spiking data is compared with spike recordings from medial frontal cortex recorded in epileptic patients [8]. Preliminary results show that the model can reproduce an asynchronous irregular network state and functional connectivity similar to the resting-state fMRI data. The model serves as a basis for the investigation of multi-scale structure-dynamics relationships in human cortex.AcknowledgmentsFunding: DFG SPP 2041, HBP SGA3 (grant 945539). Compute time: grant JINB33.[1] Schmidt M et al. (2018) Brain Struct Func 223(3), 1409.[2] Schmidt M et al. (2018) PLOS Comp Biol 14(10), e1006359.[3] Von Economo C (2009) Cellular Structure of the Human Cerebral Cortex.[4] Wagstyl K et al. (2020) PLOS Biol 18(4), e3000678.[5] Van Essen DC et al. (2013) NeuroImage 80, 62.[6] Potjans TC, Diesmann M (2014) Cereb Cortex 24(3), 785.[7] Mohan H et al. (2015) Cereb Cortex 25(12), 4839.[8] Minxha J et al. (2020) Science 368(6498).
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)
|0 G:(GEPRIS)347572269
|c 347572269
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 2
536 _ _ |a Brain-Scale Simulations (jinb33_20191101)
|0 G:(DE-Juel1)jinb33_20191101
|c jinb33_20191101
|f Brain-Scale Simulations
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 4
700 1 _ |a van Meegen, Alexander
|0 P:(DE-Juel1)173607
|b 1
|u fzj
700 1 _ |a Vollenbröker, Hannah
|0 P:(DE-Juel1)180364
|b 2
|u fzj
700 1 _ |a Bakker, Rembrandt
|0 P:(DE-Juel1)145578
|b 3
|u fzj
700 1 _ |a van Albada, Sacha
|0 P:(DE-Juel1)138512
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:894265
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165321
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180364
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145578
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2021
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21