000894269 001__ 894269
000894269 005__ 20240313094853.0
000894269 037__ $$aFZJ-2021-03144
000894269 041__ $$aEnglish
000894269 1001_ $$0P:(DE-Juel1)176776$$aKurth, Anno$$b0$$eCorresponding author$$ufzj
000894269 1112_ $$aNEST Conference 2021$$cAas$$d2021-06-28 - 2021-06-29$$wNorway
000894269 245__ $$aSub Realtime Simulation of a Full Density Cortical Microcircuit Model on a Single Compute Node
000894269 260__ $$c2021
000894269 3367_ $$033$$2EndNote$$aConference Paper
000894269 3367_ $$2DataCite$$aOther
000894269 3367_ $$2BibTeX$$aINPROCEEDINGS
000894269 3367_ $$2DRIVER$$aconferenceObject
000894269 3367_ $$2ORCID$$aLECTURE_SPEECH
000894269 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1628164551_17466$$xAfter Call
000894269 520__ $$aThe cortical microcircuit is a building block of the mammalian brain. In a model of the network below a 1 mm2 patch of cortical surface [1] the spatial structure is replaced by cell-type specific random connectivity. Each layer is represented by an excitatory and an inhibitory population of integrate-and-fire model neurons. The network model is a benchmark for neuromorphic systems [2, 3, 4].This contribution shows performance data for the microcircuit model on two AMD EPYC Rome 128 core compute nodes coupled by a direct Infiniband interconnect and running NEST 2.14 [5] (with fix 726f9b04bbd47c). On a single node we observe sub realtime performance, on two the simulation is 1.7 times faster than realtime. Our study of the aged 4g kernel serves as a reference for present optimizations, exposes bottlenecks, and guides the design of future computing systems.For the single node the energy per synaptic event is 0.26 μJ, and for the fastest configuration using two nodes 0.39 μJ. These values are in the same order of magnitude as the lowest reported so far. The findings confirm a non-trivial relationship [2] between the resources in use and the energy required. At the poster we demonstrate how power measurements with a contemporary PDU can be aligned with benchmark timers to obtain a reliable time course of power consumption.AcknowledgementsPartially supported by EU Horizon 2020 945539 (HBP SGA3) and Helmholtz IVF SO-092 (ACA).References 1. Potjans TC & Diesmann M (2014) The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex 24:785–806. doi: 10.1093/cercor/bhs358 2. van Albada SJ, et al. (2018) Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model. Front Neurosci 12:291. doi: 10.3389/fnins.2018.00291 3. Knight JC & Nowotny T (2018) GPUs outperform current HPC and neuromorphic solutions in terms of speed and energy when simulating a highly-connected cortical model. Front Neurosci 12:941. doi: 10.3389/fnins.2018.00941
000894269 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000894269 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x1
000894269 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x2
000894269 7001_ $$0P:(DE-Juel1)174496$$aFinnerty, Justin$$b1$$ufzj
000894269 7001_ $$0P:(DE-Juel1)169778$$aTerhorst, Dennis$$b2$$ufzj
000894269 7001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b3$$ufzj
000894269 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b4$$ufzj
000894269 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b5$$ufzj
000894269 909CO $$ooai:juser.fz-juelich.de:894269$$pec_fundedresources$$pVDB$$popenaire
000894269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176776$$aForschungszentrum Jülich$$b0$$kFZJ
000894269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174496$$aForschungszentrum Jülich$$b1$$kFZJ
000894269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169778$$aForschungszentrum Jülich$$b2$$kFZJ
000894269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b3$$kFZJ
000894269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b4$$kFZJ
000894269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b5$$kFZJ
000894269 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000894269 9141_ $$y2021
000894269 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000894269 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000894269 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000894269 980__ $$aconf
000894269 980__ $$aVDB
000894269 980__ $$aI:(DE-Juel1)INM-6-20090406
000894269 980__ $$aI:(DE-Juel1)IAS-6-20130828
000894269 980__ $$aI:(DE-Juel1)INM-10-20170113
000894269 980__ $$aUNRESTRICTED
000894269 981__ $$aI:(DE-Juel1)IAS-6-20130828