001     894269
005     20240313094853.0
037 _ _ |a FZJ-2021-03144
041 _ _ |a English
100 1 _ |a Kurth, Anno
|0 P:(DE-Juel1)176776
|b 0
|e Corresponding author
|u fzj
111 2 _ |a NEST Conference 2021
|c Aas
|d 2021-06-28 - 2021-06-29
|w Norway
245 _ _ |a Sub Realtime Simulation of a Full Density Cortical Microcircuit Model on a Single Compute Node
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1628164551_17466
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The cortical microcircuit is a building block of the mammalian brain. In a model of the network below a 1 mm2 patch of cortical surface [1] the spatial structure is replaced by cell-type specific random connectivity. Each layer is represented by an excitatory and an inhibitory population of integrate-and-fire model neurons. The network model is a benchmark for neuromorphic systems [2, 3, 4].This contribution shows performance data for the microcircuit model on two AMD EPYC Rome 128 core compute nodes coupled by a direct Infiniband interconnect and running NEST 2.14 [5] (with fix 726f9b04bbd47c). On a single node we observe sub realtime performance, on two the simulation is 1.7 times faster than realtime. Our study of the aged 4g kernel serves as a reference for present optimizations, exposes bottlenecks, and guides the design of future computing systems.For the single node the energy per synaptic event is 0.26 μJ, and for the fastest configuration using two nodes 0.39 μJ. These values are in the same order of magnitude as the lowest reported so far. The findings confirm a non-trivial relationship [2] between the resources in use and the energy required. At the poster we demonstrate how power measurements with a contemporary PDU can be aligned with benchmark timers to obtain a reliable time course of power consumption.AcknowledgementsPartially supported by EU Horizon 2020 945539 (HBP SGA3) and Helmholtz IVF SO-092 (ACA).References 1. Potjans TC & Diesmann M (2014) The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex 24:785–806. doi: 10.1093/cercor/bhs358 2. van Albada SJ, et al. (2018) Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model. Front Neurosci 12:291. doi: 10.3389/fnins.2018.00291 3. Knight JC & Nowotny T (2018) GPUs outperform current HPC and neuromorphic solutions in terms of speed and energy when simulating a highly-connected cortical model. Front Neurosci 12:941. doi: 10.3389/fnins.2018.00941
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|f Advanced Computing Architectures
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 2
700 1 _ |a Finnerty, Justin
|0 P:(DE-Juel1)174496
|b 1
|u fzj
700 1 _ |a Terhorst, Dennis
|0 P:(DE-Juel1)169778
|b 2
|u fzj
700 1 _ |a Pronold, Jari
|0 P:(DE-Juel1)165321
|b 3
|u fzj
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 4
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:894269
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174496
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165321
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144174
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2021
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21