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Jülich Research Centre and JARA, Jülich, Germany
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1. Introduction

• Sensory inputs arriving at the cortical circuitry are often ambiguous, noisy and imprecise

•These are typically mapped onto tuned populations and processed through a series of topographic
maps [3], comprising ordered projections among distinct neuronal populations

•Accurate sensory perception requires that external stimuli are encoded and propagated through
different processing stages in a manner that minimizes signal degradation

•Here we hypothesize that stimulus-specific pathways akin to cortical topographic maps may
provide the structural scaffold for such signal routing

➔Model: large modular circuit of spiking neurons comprising multiple sub-networks

➔Modular topographic precision can instantiate a effective denoising auto-encoder

➔ Stimulus representation improves with network depth

➔Theory predicts that denoising may be a universal, system-agnostic feature of such maps

2. Network architecture & task
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• Sequentially connected balanced random networks of LIF neurons (6 sub-networks, SSNs)

• Structured stimuli drive specific neuronal clusters in SSN0, building a topographic map

•Task: reconstruct continuous signal corrupted by Gaussian noise, using Reservoir Computing [2]

m = 1−
pinter

pintra
∈ [0, 1]

3. A de-facto denoising auto-encoder
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• Structured projections are essential for accurate signal reconstruction (see also [1])

•Beyond m ≈ 0.83, the system behaves as an effective denoising auto-encoder

- performance improves with network depth

•Modularity gradually sharpens population responses and encoding through spatial segregation

- this results in both noise suppression and response amplification

4. Asymmetric coupling and E/I balance
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Theoretical prediction for deep networks
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• Firing rates of the stimulated (non-stimulated)
clusters increase (decrease) with m

• For very deep networks, these appear to converge
to some stationary values

• E/I balance is disrupted (global inhibition)

• Effective coupling becomes asymmetric with in-
creasing modularity and network depth

•Denoising → transient, stimulus-specific change
in effective connectivity5. Fixed point analysis
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• Linear approximation of the mean input:

κν = µ− I

• For a stationary state, modularity of feed-
forward projections enters self-coupling term κ

• In the stimulated clusters, sign of κ switches
to positive for large m → multiple fixed points

•Denoising effect: successively drive the rates of the stimulated (non-stimulated) clusters to the
stable high-activity (low-activity, near zero) fixed point

• Switching point (m) is determined by stimulus intensity and input noise in SSN0
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6. Multiple dynamical regimes
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Dynamical regimes in SSN5 
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•Topography induces behaviorally relevant dynamical
regimes in deeper sub-networks (2 stimuli):
- Co-Ex: multiple stimuli decodable

- WTA: one stimulus dominates (winner-take-all)

- WLC: stochastic switching (winnerless-competition)

•Correlation-based similarity score between the firing
rates of the stimulated clusters

•Co-Ex vanishes for very deep networks

• (?) Fixed-point landscape: 2 attractors (wells, min.)

- modularity and input control “well depth”

Discussion

•We show, in biologically plausible setting, that the experimentally observed topographic maps
may serve as a structural denoising mechanism for sensory stimuli

•Modularity changes the fixed point landscape, leading to bistable operating regimes

•Robust, general structural property (also for conductance-based synapses and rate networks)

•May explain multiple phenomena: pop-out effect, perceptual bistability

? Impact of different architectures: a) feedback projections; b) shared inhibition?

?Relation to other modular networks, e.g., clustered sub-populations within a local network?
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