000894277 001__ 894277
000894277 005__ 20220131120447.0
000894277 0247_ $$2doi$$a10.1039/D0DT00124D
000894277 0247_ $$2ISSN$$a0300-9246
000894277 0247_ $$2ISSN$$a1364-5447
000894277 0247_ $$2ISSN$$a(2001)
000894277 0247_ $$2ISSN$$a1470-479X
000894277 0247_ $$2ISSN$$a1477-9226
000894277 0247_ $$2ISSN$$a1477-9234
000894277 0247_ $$2ISSN$$a2050-5671
000894277 0247_ $$2Handle$$a2128/28389
000894277 0247_ $$2pmid$$a32193522
000894277 0247_ $$2WOS$$aWOS:000526110700030
000894277 037__ $$aFZJ-2021-03150
000894277 082__ $$a540
000894277 1001_ $$0P:(DE-HGF)0$$aPandey, G. C.$$b0
000894277 245__ $$aEvidence of anomalous conventional and spontaneous exchange bias, high coercivity in Fe doped NiCr2O4 spinel
000894277 260__ $$aLondon$$bSoc.$$c2020
000894277 3367_ $$2DRIVER$$aarticle
000894277 3367_ $$2DataCite$$aOutput Types/Journal article
000894277 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627903667_18451
000894277 3367_ $$2BibTeX$$aARTICLE
000894277 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894277 3367_ $$00$$2EndNote$$aJournal Article
000894277 520__ $$aNiCr2−xFexO4 (x = 0 and 0.2) polycrystalline ceramics have been synthesized successfully through a simple co-precipitation technique to study the evolution of structural and magnetic properties by doping Fe. X-ray diffraction (XRD) reveals that the high-temperature cubic phase (space group Fd[3 with combining macron]m) observed at 320 K in bulk NiCr2O4 is stabilized at room temperature by decreasing the particle size to nanometer in x = 0 as well as after incorporating 20 at% Fe in the NiCr2O4 lattice. The cation distribution obtained from X-ray absorption fine structure (XAFS) analysis illustrates that while in x = 0, Ni2+ and Cr3+ ions occupy the tetrahedral (A) and octahedral (B) sites, respectively, x = 0.2, Fe3+ and Cr3+ ions occupy the A and B sites, respectively, and Ni2+ ions are distributed among the A and B sites. This transformation from the normal to mixed spinel structure strongly affects the magnetic properties. While the paramagnetic to long-range ferrimagnetic ordering temperature TC is enhanced from 71 to 192 K, significantly large coercive field (HC) of ∼29 kOe is observed for x = 0.2 as compared to the HC ∼13 kOe for x = 0. Moreover, unusually large conventional and spontaneous exchange bias fields of ∼26 and ∼2.6 kOe are observed for x = 0.2, which is absent for x = 0. The presence of anomalous exchange bias field is ascribed to the unidirectional exchange anisotropy between the two magnetic sublattices at A and B sites. The training effect of the exchange bias field is discussed using a phenomenological model, which considers the contribution from irreversible uncompensated spins that modify the exchange anisotropy at the interface between A and B magnetic sublattices. In addition, diffuse neutron scattering (DNS) with XYZ analysis is employed for both compositions to clearly illustrate the low-temperature peculiar magnetic phase transitions such as spin spiral transition, TS and spin lock-in transition, Tl. The DNS demonstrates that while Tl decreases from 10 K to 7 K with the incorporation of Fe in the NiCr2O4 lattice, TS significantly increases from 28 K to 50 K.
000894277 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000894277 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000894277 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894277 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000894277 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000894277 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000894277 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000894277 7001_ $$0P:(DE-Juel1)141702$$aNemkovskiy, Kirill$$b1
000894277 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b2
000894277 7001_ $$0P:(DE-HGF)0$$aRath, Chandana$$b3$$eCorresponding author
000894277 773__ $$0PERI:(DE-600)1472887-4$$a10.1039/D0DT00124D$$gVol. 49, no. 14, p. 4502 - 4517$$n14$$p4502 - 4517$$tDalton transactions$$v49$$x1477-9234$$y2020
000894277 8564_ $$uhttps://juser.fz-juelich.de/record/894277/files/d0dt00124d.pdf
000894277 8564_ $$uhttps://juser.fz-juelich.de/record/894277/files/su_Dalton_2020_final_version.pdf$$yPublished on 2020-03-04. Available in OpenAccess from 2021-03-04.
000894277 909CO $$ooai:juser.fz-juelich.de:894277$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000894277 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)141702$$aExternal Institute$$b1$$kExtern
000894277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b2$$kFZJ
000894277 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000894277 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000894277 9141_ $$y2021
000894277 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894277 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDALTON T : 2019$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-27$$wger
000894277 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-27$$wger
000894277 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000894277 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000894277 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000894277 920__ $$lyes
000894277 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000894277 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000894277 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000894277 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000894277 980__ $$ajournal
000894277 980__ $$aVDB
000894277 980__ $$aUNRESTRICTED
000894277 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000894277 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000894277 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000894277 980__ $$aI:(DE-588b)4597118-3
000894277 9801_ $$aFullTexts