001     894277
005     20220131120447.0
024 7 _ |a 10.1039/D0DT00124D
|2 doi
024 7 _ |a 0300-9246
|2 ISSN
024 7 _ |a 1364-5447
|2 ISSN
024 7 _ |a (2001)
|2 ISSN
024 7 _ |a 1470-479X
|2 ISSN
024 7 _ |a 1477-9226
|2 ISSN
024 7 _ |a 1477-9234
|2 ISSN
024 7 _ |a 2050-5671
|2 ISSN
024 7 _ |a 2128/28389
|2 Handle
024 7 _ |a 32193522
|2 pmid
024 7 _ |a WOS:000526110700030
|2 WOS
037 _ _ |a FZJ-2021-03150
082 _ _ |a 540
100 1 _ |a Pandey, G. C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Evidence of anomalous conventional and spontaneous exchange bias, high coercivity in Fe doped NiCr2O4 spinel
260 _ _ |a London
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1627903667_18451
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a NiCr2−xFexO4 (x = 0 and 0.2) polycrystalline ceramics have been synthesized successfully through a simple co-precipitation technique to study the evolution of structural and magnetic properties by doping Fe. X-ray diffraction (XRD) reveals that the high-temperature cubic phase (space group Fd[3 with combining macron]m) observed at 320 K in bulk NiCr2O4 is stabilized at room temperature by decreasing the particle size to nanometer in x = 0 as well as after incorporating 20 at% Fe in the NiCr2O4 lattice. The cation distribution obtained from X-ray absorption fine structure (XAFS) analysis illustrates that while in x = 0, Ni2+ and Cr3+ ions occupy the tetrahedral (A) and octahedral (B) sites, respectively, x = 0.2, Fe3+ and Cr3+ ions occupy the A and B sites, respectively, and Ni2+ ions are distributed among the A and B sites. This transformation from the normal to mixed spinel structure strongly affects the magnetic properties. While the paramagnetic to long-range ferrimagnetic ordering temperature TC is enhanced from 71 to 192 K, significantly large coercive field (HC) of ∼29 kOe is observed for x = 0.2 as compared to the HC ∼13 kOe for x = 0. Moreover, unusually large conventional and spontaneous exchange bias fields of ∼26 and ∼2.6 kOe are observed for x = 0.2, which is absent for x = 0. The presence of anomalous exchange bias field is ascribed to the unidirectional exchange anisotropy between the two magnetic sublattices at A and B sites. The training effect of the exchange bias field is discussed using a phenomenological model, which considers the contribution from irreversible uncompensated spins that modify the exchange anisotropy at the interface between A and B magnetic sublattices. In addition, diffuse neutron scattering (DNS) with XYZ analysis is employed for both compositions to clearly illustrate the low-temperature peculiar magnetic phase transitions such as spin spiral transition, TS and spin lock-in transition, Tl. The DNS demonstrates that while Tl decreases from 10 K to 7 K with the incorporation of Fe in the NiCr2O4 lattice, TS significantly increases from 28 K to 50 K.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 1
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e DNS: Diffuse scattering neutron time of flight spectrometer
|f NL6S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)DNS-20140101
|5 EXP:(DE-MLZ)DNS-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|x 0
700 1 _ |a Nemkovskiy, Kirill
|0 P:(DE-Juel1)141702
|b 1
700 1 _ |a Su, Y.
|0 P:(DE-Juel1)130991
|b 2
700 1 _ |a Rath, Chandana
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1039/D0DT00124D
|g Vol. 49, no. 14, p. 4502 - 4517
|0 PERI:(DE-600)1472887-4
|n 14
|p 4502 - 4517
|t Dalton transactions
|v 49
|y 2020
|x 1477-9234
856 4 _ |u https://juser.fz-juelich.de/record/894277/files/d0dt00124d.pdf
856 4 _ |y Published on 2020-03-04. Available in OpenAccess from 2021-03-04.
|u https://juser.fz-juelich.de/record/894277/files/su_Dalton_2020_final_version.pdf
909 C O |o oai:juser.fz-juelich.de:894277
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-Juel1)141702
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130991
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DALTON T : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21