Home > Publications database > Deterministic Global Nonlinear Model Predictive Control with Neural Networks Embedded > print |
001 | 894319 | ||
005 | 20240712112901.0 | ||
024 | 7 | _ | |a 10.1016/j.ifacol.2020.12.1207 |2 doi |
024 | 7 | _ | |a 1474-6670 |2 ISSN |
024 | 7 | _ | |a 2405-8963 |2 ISSN |
024 | 7 | _ | |a 2405-8971 |2 ISSN |
024 | 7 | _ | |a 2589-3653 |2 ISSN |
024 | 7 | _ | |a 2128/28412 |2 Handle |
024 | 7 | _ | |a WOS:000652593000151 |2 WOS |
037 | _ | _ | |a FZJ-2021-03179 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Doncevic, Danimir |0 P:(DE-Juel1)180221 |b 0 |u fzj |
111 | 2 | _ | |a 1st Virtual IFAC World Congress |c online |d 2020-07-11 - 2020-07-17 |w Germany |
245 | _ | _ | |a Deterministic Global Nonlinear Model Predictive Control with Neural Networks Embedded |
260 | _ | _ | |a Laxenburg |c 2020 |b IFAC |
300 | _ | _ | |a 5273 - 5278 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |m journal |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1628086682_30450 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Nonlinear model predictive control requires the solution of nonlinear programs with potentially multiple local solutions. Here, deterministic global optimization can guarantee to find a global optimum. However, its application is currently severely limited by computational cost and requires further developments in problem formulation, optimization solvers, and computing architectures. In this work, we propose a reduced-space formulation for the global optimization of problems with recurrent neural networks (RNN) embedded, based on our recent work on feed-forward artificial neural networks embedded. The method reduces the dimensionality of the optimization problem significantly, lowering the computational cost. We implement the NMPC problem in our open-source solver MAiNGO and solve it using parallel computing on 40 cores. We demonstrate real-time capability for the illustrative van de Vusse CSTR case study. We further propose two alternatives to reduce computational time: i) reformulate the RNN model by exposing a selected state variable to the optimizer; ii) replace the RNN with a neural multi-model. In our numerical case studies each proposal results in a reduction of computational time by an order of magnitude. |
536 | _ | _ | |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) |0 G:(DE-HGF)POF4-1121 |c POF4-112 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Schweidtmann, Artur M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Vaupel, Yannic |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schäfer, Pascal |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Caspari, Adrian |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 5 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.ifacol.2020.12.1207 |g Vol. 53, no. 2, p. 5273 - 5278 |0 PERI:(DE-600)2839185-8 |n 2 |p 5273 - 5278 |t IFAC-PapersOnLine |v 53 |y 2020 |x 2405-8963 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894319/files/1-s2.0-S2405896320316037-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894319 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180221 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)180221 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-112 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Digitalisierung und Systemtechnik |9 G:(DE-HGF)POF4-1121 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|