001     894319
005     20240712112901.0
024 7 _ |a 10.1016/j.ifacol.2020.12.1207
|2 doi
024 7 _ |a 1474-6670
|2 ISSN
024 7 _ |a 2405-8963
|2 ISSN
024 7 _ |a 2405-8971
|2 ISSN
024 7 _ |a 2589-3653
|2 ISSN
024 7 _ |a 2128/28412
|2 Handle
024 7 _ |a WOS:000652593000151
|2 WOS
037 _ _ |a FZJ-2021-03179
082 _ _ |a 600
100 1 _ |a Doncevic, Danimir
|0 P:(DE-Juel1)180221
|b 0
|u fzj
111 2 _ |a 1st Virtual IFAC World Congress
|c online
|d 2020-07-11 - 2020-07-17
|w Germany
245 _ _ |a Deterministic Global Nonlinear Model Predictive Control with Neural Networks Embedded
260 _ _ |a Laxenburg
|c 2020
|b IFAC
300 _ _ |a 5273 - 5278
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1628086682_30450
|2 PUB:(DE-HGF)
520 _ _ |a Nonlinear model predictive control requires the solution of nonlinear programs with potentially multiple local solutions. Here, deterministic global optimization can guarantee to find a global optimum. However, its application is currently severely limited by computational cost and requires further developments in problem formulation, optimization solvers, and computing architectures. In this work, we propose a reduced-space formulation for the global optimization of problems with recurrent neural networks (RNN) embedded, based on our recent work on feed-forward artificial neural networks embedded. The method reduces the dimensionality of the optimization problem significantly, lowering the computational cost. We implement the NMPC problem in our open-source solver MAiNGO and solve it using parallel computing on 40 cores. We demonstrate real-time capability for the illustrative van de Vusse CSTR case study. We further propose two alternatives to reduce computational time: i) reformulate the RNN model by exposing a selected state variable to the optimizer; ii) replace the RNN with a neural multi-model. In our numerical case studies each proposal results in a reduction of computational time by an order of magnitude.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schweidtmann, Artur M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vaupel, Yannic
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schäfer, Pascal
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.ifacol.2020.12.1207
|g Vol. 53, no. 2, p. 5273 - 5278
|0 PERI:(DE-600)2839185-8
|n 2
|p 5273 - 5278
|t IFAC-PapersOnLine
|v 53
|y 2020
|x 2405-8963
856 4 _ |u https://juser.fz-juelich.de/record/894319/files/1-s2.0-S2405896320316037-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894319
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180221
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)180221
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21