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HIGHLIGHTS GRAPHICAL ABSTRACT

o The field of energy systems analysis suf-
fers from heterogeneous data, incom- < ‘2?.’.2223%’5‘.’.?:‘)
patible definitions and irreproducible rem—
models. Ontologies, particularly the pre-
sented Open Energy Ontology helps to
solve these problems.
Ontologies are a precondition for model
coupling, semantic analyses of data, and
data re-use.
The Open Energy Ontology offers a com-
mon description of knowledge and vo-
cabulary which is used across domains < o >
and different modelling approaches.
The Open Energy Ontology is embedded
within a broad community process to en-
sure the broadest coverage possible.
e Use cases demonstrate the added value

of an ontology in the energy domain.
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alisation of the energy domain. Here, we present the Open Energy Ontology (OEO) developed for the domain of
energy systems analysis. Using the OEO provides several benefits for the community. First, it enables consistent
annotation of large amounts of data from various research projects. One example is the Open Energy Platform
(OEP). Adding such annotations makes data semantically searchable, exchangeable, re-usable and interoperable.
Second, computational model coupling becomes much easier. The advantages of using an ontology such as the

OEO are demonstrated with three use cases: data representation, data annotation and interface homogenisation.
We also describe how the ontology can be used for linked open data (LOD).

1. Introduction

The objective assessment of current and future energy system design
and operation is a global and highly multidisciplinary research question
in the domain of energy systems analysis. Experts in engineering, nat-
ural and social sciences, physics, mathematics, computer science, eco-
nomics, meteorology and geography often work together: Important ex-
amples constitute analyses of pathways towards a sustainable energy
system in line with the Paris Agreement'. Countries, institutions and
researchers depend on networking and cooperation within the energy
systems community. Extensive scientific exchange between all relevant
actors is needed to solve one of our most urgent societal challenges. But
different communities amongst these actors have developed different
nomenclatures and conceptualisations, that are also reflected in the re-
spective documentation of research data and results. This heterogeneous
structure of this research domain entails a number of problems regarding
data and knowledge management that hinder friction-less collaboration
between scientists. In the following, we will introduce the Open Energy
Ontology (OEO) as a means to address these problems. First, we dicuss
the domain of energy systems modelling and detail specific challenges
that the OEO can address. In Section 3 we provide an introduction to on-
tologies and their benefits for energy system modelling. In Section 4 we
present existing approaches in the energy domain. In Section 5, we in-
troduce the OEO as a domain ontology for energy system modelling
and analysis, and we describe its design choices, patterns and content
structures. Section 6 elaborates on the OEO’s open and collaborative
development process and on how we embed these in the energy sys-
tems analysis community to ensure the OEO’s sustainable development.
Thereafter, in Section 7 we describe the evaluation of several aspects
of the OEO. Section 8 is about use cases, which are part of the third-
party funded SzenarienDB, LOD-GEOSS and SIROP research projects. In
Section 9 we close this article with general conclusions and an outlook
of future work.

2. Challenges within a heterogeneous domain

Research in this domain is often accomplished by using computa-
tional models (energy system modelling) which describe the behaviour
and possible evolution of energy and related systems. A great variety of
energy models and scenarios, based on a coherent and internally con-
sistent set of assumptions and motivations, depict possible pathways for
future energy systems. However, a single scenario or a model by itself
can never map all relevant aspects with sufficient accuracy. Thus, re-
searchers usually build a set of scenarios to address a certain problem,
focusing on special questions built on individual narratives. A scenario
may focus on technological, economical, ecological or social aspects,
or a combination of these. Energy models differ in their regional and
sector scope (e.g. industry, residential or mobility), their level of detail
(e.g. their temporal and spatial resolutions), and their initial assump-
tions. The core of knowledge generation is often the comparison and
interpretation of scenario and model outputs based on variations of the
input data and assumptions to understand the system behaviour. The
facilitation of inter-model data transfer enables better analysis by com-
bining data from well proven and tested model frameworks with other
approaches and domains.

1 https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-
agreement

2.1. Evolution of energy systems modelling

Pfenninger et al [49] provide an overview of the evolution of energy
system modelling facing the various upcoming challenges throughout
history. In this paragraph, we present a short wrap-up on how energy
systems analysis evolved from technological models to modelling ap-
proaches covering various domains of science with a steadily increasing
complexity in data handling. Energy systems analysis began in the early
1970s as a reaction to the oil crisis, e.g. with founding of the Energy
Technology Systems Analysis Programme (ETSAP) of the International
Energy Agency (IEA) in 1974 and the International Institute for Applied
Systems Analysis (ITASA) in 1972.

The first energy system models were based on linear programming
[11]. Widely used examples are the MARKAL/TIMES model family
[18] or the MESSAGE model [56]. These models focused on the techno-
logical evolution of the energy systems optimising towards the least-cost
solution. The next innovation was the development of hybrid models
[27] which extended the modelling to the economic domain by coupling
the bottom-up technology energy system models with economic general
equilibrium models, for example with the model MACRO. The MARKAL-
MACRO linking was obtained by hard-linking two models and directly
solving the coupled system models[44]. The MESSAGE-MACRO linking
used a soft approach [46] by defining interfaces between the MESSAGE
and the MACRO model, feeding the output into the other model and
solving them in an iterative approach.

2.2. Rising challenges in complex data handling and emerging big data and
artificial intelligence approaches

These modelling approaches already combined data from the energy
technology domain as well as the economy domain. In the beginning,
these models were mainly dealing with conventional energy systems
based on fossil and nuclear power sources. Since these fuels are storable
and usable energy can be produced on demand, these models did not
need to deal with temporal and spatial variability on the production
side. These models only covered a few time slices for the different sea-
sons, day and night, and peak demand, summing up to 12 time slices
per year accounting for differences on the demand side. New challenges
then arose with the increasing importance of renewable power sources
in climate-neutral energy systems. Specifically, solar and wind power
are highly variable in space and time. Thus, energy system modelling
that included larger shares of these sources needed to deal with their
spatial and temporal availability patterns. Therefore, a new class of en-
ergy system models emerged after the turn of the century. These typ-
ically used 8760 hourly time steps per year and required climate and
weather data as an important, and new, input. Since then, energy sys-
tem modelling also included the domains of climate and weather. Typi-
cal representatives of these are models such as REMIx [55], PyPSA [6] or
SCOPE [19]. Newer approaches focus on the increased inclusion of so-
cial and societal aspects. Examples are socio-technical scenario devel-
opment [63] and agent-based modelling [12,33]. In addition to these
more classical modelling approaches, new artificial intelligence, ma-
chine learning and big data methods receive increasing recognition in
the domain, e.g. in the use of machine learning in model parametrisation
[21]. Donghan et al. [30] show a broad range of applications which use
artificial intelligence (AI) methods in energy research. Within energy
systems analysis, the first Al applications focus on building analysis and
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management systems [2,15,31,39,59,65], local integrated energy sys-
tems [5,14,41], smart charging [20], demand prediction [4,7,8,40,51],
big data analysis including data mining [42,45] and investment deci-
sions [21]. Algorithms therefore need to be enabled to understand and
interpret this large variety of data sources from heterogeneous domains.

With increasing resolution in technologies, time, space and the in-
clusion of more thematic domains, data handling becomes increasingly
complex. The correct interpretation of data from different domains is
thus key for successful analysis within single models and even more if
models are coupled through data interfaces. The Open Energy Ontol-
ogy (OEO) is an approach for an exact definition of data and how they
should be interpreted by the models used in energy systems analysis.
Since both fields — machine learning and big data — are rapidly growing,
this becomes an urgent need for future research. Examples include the
problem of ”data silos” - big data that is, in principle, available, but that
cannot be reused by other researchers, because its curation and formats
are not reproducible, or too expensive in terms of time to reformat and
hence not usable. If the same data were to be annotated with an on-
tology, it would be immediately reusable as its meaning and mapping
to other data sources would be unambiguous. Ontologies also make it
possible in machine learning pipelines to use data from various sources
without rewriting the complete work-flow, since different data can be
treated the same way if annotated consistently with an ontology. The
Open Energy Ontology is therefore an important enabler for the appli-
cation of these methods.

2.3. Research driven by heterogeneous data from heterogeneous sources

Research in the domain of energy systems analysis is driven by data
to a very large extent. Results are also highly dependent on the qual-
ity of input data, since scenarios vary considerably depending on input
variations. Von Scheidt et al. did an extensive review of data analytics
in the electricity sector [54] and found a large variety of data analysis
approaches along the whole value chain. Input data for scenarios and
models usually originate from a large variety of data sources belong-
ing to many different domains. Harmonising and interpreting the data
from heterogeneous domains remains a major challenge at the begin-
ning of each research task: data is provided by public agencies, gath-
ered from scientific papers and commercial or public databases, stems
from crowd-sourcing initiatives or is measured by researchers or via re-
mote sensors. The respective data formats range from single values or
time series to multidimensional fields. The data represent information
in various spatial and temporal resolutions, e.g. hourly wind speeds at
various sites and various heights above ground. In addition to the exten-
sive data basis, the energy systems analysis community is — as a result of
its modelling efforts — itself generating data at a large scale. Without the
means of permanently and consistently annotating data with contextual
information and documentation, databases are at risk of becoming “data
graveyards” in which it is difficult to find, link, retrieve and update exist-
ing and relevant data. This situation furthers the emergence of isolated
and quickly outdated data silos. Such silos lead to cycles of assembling
data inventories again and again, resulting in poor data handling effi-
ciency across the community. A positive counter-example comes from
biology: the Gene Ontology?, founded in 1998, is at the very center of
biomedical knowledge about gene functions. It is a shared, distributed
and ubiquitously used collection of over 6 million functional annotations
of more than 4400 species in a machine-readable format. It includes
findings from over 150,000 papers and has itself been used in tens of
thousands of scientific studies. It powers databases, is widely used for
any kind of annotation task and is thus arguably the most successful
resource in computational biology. As an example from a different do-
main, the terms and relations defined in ontologies form the foundation
for many internet of things (IoT) applications and play a fundamen-

2 geneontology.org
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tal role in the development of digital twins that are consistently usable
across different domains. But the benefits of the OEO exceed the mere
annotation of existing knowledge. Each element of this ontology is part
of a large logical theory that is based on the expressive OWL2 seman-
tics [32] and can be used to infer implicit knowledge. This enables the
development of information systems that not only integrate the data
from different scientific contexts, such as between chemistry and biol-
ogy [26], but also fill existing gaps automatically in accordance with the
ontology’s logical theory. The knowledge represented in ontologies can
also be used as a foundation for novel Al approaches. For example, the
ontology class structure of the CHEBI ontology has recently been used
as the foundation for a deep-learning approach for the classification of
chemical entities[25].

2.4. Research gap - the road to the open energy ontology

As has been described in the previous subsections 2.1 through 2.3,
dealing with increasing complex data structures in energy systems anal-
ysis has historically been a neglected topic. However, there are now a
number of initiatives of open data platforms and forums which have
begun to discuss these challenges, as described in this subsection. In ad-
dition, we describe related ontology development in Section 4. We will
link these to our work.

Nevertheless, none of the existing approaches covers the broad range
of terminologies we need for our domain, nor has a suitable structure for
our requirements. As of now, there is no ontology tailored to energy sys-
tems analysis that describes the relevant data and modelling approaches
with all their characteristics. Thus, the management, exchange, compar-
ison and interpretation of scientific data, approaches and results repre-
sent difficult challenges continuously addressed by third-party funded
projects and community initiatives®4>. The openmod glossary® was an
initial effort to develop a community-managed knowledge store in the
energy modelling domain and served as a basis for the OEO. The glos-
sary’ included 323 terms centred around the modelling of photovoltaic
modules gathered by the community and from a series of lectures at the
HTWS. Its web application has enabled the allocation of synonyms and
acroynms, sub- and generic terms and the creation of discussion threads
for each term. The glossary’s usefulness for shared comprehension has
become clear alongside its technical and structural limits as (machine-
Jreadable and a structured storage of knowledge. The terminology of
the third-party funded project openENTRANCE® only tackles terms rel-
evant to project-specific models and is missing relational links between
its terms. The lack of semantic linkage between the terms in the two
projects mentioned above hinders their application to Al, which how-
ever, is being addressed in the OEO.

One notable ontology has been released, based on use-cases involv-
ing industry parks [13]. This ontology contains important entities re-
lating to energy grid structures and demand-supply chains. We aim to
align a variety of entities in both ontologies. Yet, many aspects that are
important for a conceptualisation of the energy systems analysis domain
are not covered. This specifically includes environmental factors and the
description of data and scientific processes, both major elements of the
OEQ’s domain.

We developed the OEO with the objective of easing cooperation and
exchange of information across the energy systems analysis domain. We
also designed the OEO to map the complexity of the research area and

3 https://www.energieforschung.de/forschung-und-
innovation/systemanalyse/modex

4 https://www.forschungsnetzwerke-energie.de/systemanalyse

5 https://openmod-initiative.org/manifesto.html

6 https://wiki.openmod-initiative.org/wiki/Category:Glossary

7 an alphabetical directory of terms of a domain with definitions and their
sources

8 https://re-master.htw-berlin.de/

9 https://github.com/openENTRANCE/nomenclature
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to collect, connect and structure the ambiguous terminology of adjacent
domains, the energy systems analysis domain needs information from
(Fig. 1). Its steady growth increasingly enables the precise, unequivo-
cal and comprehensible annotation and interpretation of research data.
Serving as a basis for international and friction-less scientific exchange,
the OEO enables consolidation and re-use of distributed data inventories
across domains, thereby harnessing synergies within the global and in-
terdisciplinary energy systems analysis community and supporting the
robust transition to sustainable energy systems.

2.5. Objectives

Our objectives are tailored to the increased sophistication and inter-
dependence of energy system modelling as described above. New needs
arise compared to the past: Models and modellers increasingly interact;
more and heterogeneous domain data and knowledge becomes avail-
able; computational capacities grow. Previously suitable routines — such
as exchanging data as files, adding data to models by hand, coupling
models by pre-defined, static interfaces — become less and less feasible.
Increased automation of these interfaces by machines requires a seman-
tic understanding of the data.

Further, when interacting, different experts may be expressing the
same thing, but using different terms — those that are common within
their discipline. This poses challenges, not only in investing the time to
understand one another before one can work efficiently together, but
also in terms of investing time to find such a common understanding
again and again as these challenges occur repeatedly and in different
project contexts. An example of a common misunderstanding regards
final energy consumption of the industry sector. While models which
are calibrated to the European energy statistic (Eurostat) define final
energy consumption of the industry sector excluding the fuel uses for
non-energetic fuel consumption, models which are calibrated to inter-
national statistics (IPCC) define it including non-energy uses. If a clear
definition of this result variable is missing, these different approaches
are not easily traceable and lead to confusion.

An ontology can help to ease these challenges. Our goals with this
paper are to demonstrate the value added by ontologies and to describe
how, with the Open Energy Ontology - in the energy system modelling
domain — we have taken some steps towards a common vocabulary for

¢ data understanding across domains (see Section 6),

data representation (see Section 8.3),

data annotation for data to be machine and Al interpretable (see
Section 8.2),

interface-homogenisation for coupling of models using clear model-
interface descriptions (see Section 8.4),

automated data validation (see Section 9).

While the Open Energy Ontology is growing, it is by no means the
only ontology in this field. Existing ontologies, how they relate and how
they are integrated is described in Section 4. This section also describes
the novelty of our approach and how it enhances scientific knowledge
in the domain of energy systems analysis.

3. What is an ontology and what is it good for?

Ontologies, as the term is used here, are formal descriptions of en-
tities in a certain domain and their relationships to one another. This
is different from Ontology as a sub-field of philosophy, which is about
the study of being and the fundamental categories of existence. In con-
trast to taxonomies (like the familiar taxonomy of animals and plants),
or thesauri or vocabulary lists, ontologies also define the relations be-
tween entities in a formal way. This means that, typically, an ontology
consists of different kinds of generic classes (e.g. buildings, house, roof,
colour, or tilt), which can be related to one another, e.g. a house has a
roof as part and is located in a village and a roof has a colour and a tilt
(“has part”, “located in”, “has colour” and “has tilt” are relations). Spe-
cific instances of classes can be defined as well, e.g. the Eiffel tower is a
building and has a grey colour. Here, the Eiffel tower is an instance of the
class of buildings and grey is an instance of colour.

Ontologies, as formal specification of entities within a domain, usu-
ally include definitions and provides several advantages. Ontologies

e provide a common vocabulary within a field. This facilitates sharing of
information and avoids ambiguities — even for software agents. Hence
they ease cooperation.

¢ enable researchers to better navigate the complexity of a domain, since
they provide a well-thought-out structure of definitions and relation-
ships. Ontologies make it easy to check for consistency.

e enable re-using domain knowledge. Existing work does not have to be
repeated and can be combined with own efforts.
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e separate domain knowledge from operational knowledge. Processes may
be independent of the involved components. For example a robot
turns screws (process, i.e. operational knowledge) and the screws
for that process can come in different sizes (process components,
i.e. domain knowledge). Separating the two conceptually allows for
easier reuse when describing conceptually similar things. Domain
knowledge can be reused without the need for knowledge of the
operational details, while operational knowledge can still be repre-
sented.
allow increasing knowledge by automatic inference. Axioms are logical
expressions in the underlying logical language in which the ontology
is written. Axioms are associated with classes in an ontology (e.g. all
trees have trunks) and apply to all instances of the class. In practice,
this means that if, for example, a data set of trees is added as in-
stances to an ontology, a so-called reasoner is able to infer that the
new tree instances also have trunks, thus creating new knowledge.
o map between isolated data. Typically, institutions have their own data
formats, work-flows and terms, sometimes called data silos. If the
same ontology is used, then the data can be easily transferred, ex-
changed, and updated.

We can distinguish between two types of ontologies: upper-level on-
tologies and domain ontologies. Domain ontologies focus on a certain
part of reality, a domain, such as energy systems. Upper-level ontologies
provide classifications and relations of very generic sorts of things, such
as “object” or “process”, which are used across domains. Examples of
upper-level ontologies include the Suggested Upper Merged Ontology
(SUMO) and the Basic Formal Ontology (BFO). Domain ontologies usu-
ally use an external upper-level ontology for their basic structure and
extend these in a domain-specific way. BFO is the upper-level ontology
used by the OEO and is further described in Section 5.2.

The most widely used family of knowledge representation languages
for authoring ontologies is the Web Ontology Language (OWL). It builds
upon the Resource Description Framework (RDF), which is able to rep-
resent information about entities and their relationships. The Protégé!?
software is a popular tool for implementation and exploration of OWL
ontologies in a graphical user interface.

4. Ontologies in the energy domain

To date, the only well-known terminological resource for energy sys-
tems analysis is the EnArgus Ontology [48]. The German state and its
federal governments use this ontology to support decision-makers with
energy science related findings. It includes a wide range of terminology
that was collected in a semi-automatic fashion. The related wiki offers
a rich resource containing useful terms and definitions. However, the
EnArgus Ontology is, to this date, proprietary and thus currently not
available to the community for reuse. Based on the publicly available
information in its wiki, we infer that the EnArgus ontology mainly con-
sists of a subclass hierarchy and is only lightly axiomatised (i.e. has only
simple logical expressions, see Section 3).

Energy markets and price developments are a central part of many
energy system models. Electricity markets form the subject of the Elec-
tricity Markets Ontology [53], and financial markets of the Financial Indus-
try Business Ontology [3]. Recent developments in energy systems analy-
sis necessitate a more holistic approach to the representation of markets,
including for heat, gas and other energy carriers as well as the transi-
tions between those. The OEO does not yet include a comprehensive
treatment of markets, but when we add the respective terms, we will
harness pre-existing ontologies where possible, supplemented by addi-
tional content according to our needed scope. Semantic technologies
have been applied in many smart home applications for data manage-
ment and data integration. Therefore, the domains of houses and urban

10 https://protege.stanford.edu/
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development have been covered by ontologies. For example, the SE-
MANCO Ontology [43] and the Energy Resource Ontology [34] cover
energy-related aspects of the housing sector. Other physical systems,
their relations and properties are modelled in the SEAS ontology [38],
which was developed as a generalisation of the semantic sensor ontol-
ogy (SSN) [9]. Many sources of renewable energy depend on some kind
of meteorological phenomena and most analyses in the climate and en-
ergy field involve assumptions regarding weather and climate to project
the behaviour of those energy sources. The annotation of meteorological
and climate data and the involved technologies was the main use case
for the development of the OntoWind ontology [36]. In summary, as of
today, no publicly available ontology covers the full domain of energy
systems analysis. With the OEO, we have begun to address this gap.

5. The OEO and its general design choices
5.1. Ontology background, context and outline

We created the OEO as a part of the Open Energy Family, an open
source toolbox and database for open data within the field of energy
systems analysis research. We built this toolbox around the Open Energy
Platform (OEP)'!. The OEP is a collaborative online platform with an un-
derlying database for energy and climate analysis data. To this database,
users can upload a wide range of data types, for example time-series, ge-
ographic data and lookup-tables. Single energy data sets and complete
energy scenarios can be uploaded to the database. Our users publish all
data sets under an open license and thus data becomes freely and easily
accessible to others. The OEP therefore serves as a reference and facil-
itates scientific and political decision-making by fostering an improved
level of transparency and comparability.

Currently, we develop the OEO within the project SzenarienDB, aug-
mented by the projects LOD-GEOSS and SIROP. In SzenarienDB we ex-
tended the functionality of the Open Energy Platform to become a trans-
parent and user friendly database for energy scenarios [52]. Scenarios
are an essential part of the domain of energy systems analysis and at
the same time they are complex and heterogeneous in nature. To make
scenarios transparent and comprehensible, an ontology is needed to gen-
erate a common understanding across research areas.

The aim of the project LOD-GEOSS is to create a network of heteroge-
neous databases for input and output data from energy systems analysis.
The idea is to share the data in decentralised databases which stay with
the data owners, so they can take care of data updates and maintenance.
The databases are connected through a metadata catalogue which makes
the data findable and accessible.

In the project SIROP we strive towards a better interoperability of
energy scenarios. The comparison of scenario data sets is a laborious
process which is usually done manually. By using and extending the
OEO, a semi-automated comparison of energy scenarios becomes possi-
ble.

SzenarienDB, LOD-GEOSS and SIROP implement the FAIR princi-
ples'? of open data to energy systems analysis data.

We develop the OEO using the Web Ontology Language (OWL). Cur-
rently, the OEO contains around 870 classes. About 350 of these are
OEO-owned classes. The remainder is imported from one of the exter-
nal ontologies as described in Section 5.3. Furthermore, the OEO uses 80
object properties. About half of these are created internally for domain-
specific purposes, while the other half are imported. To date, the OEO
contains over 8500 axioms (logical assertions).

We made the first official release — 1.0.0 — of the OEO on June 11,
2020, and we released version 1.4.0 on March 02, 2021. The OEO can

11 https://openenergy-platform.org/
12 https://www.go-fair.org/fair-principles/
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be accessed via GitHub'? and its official releases are published on the
OEP!4.

5.2. BFO, Design patterns and best practices

We structure the OEO based on a shared “upper level” or founda-
tional ontology that describes basic types of entity, such as “object” and
“process”, which are not domain specific and serve as a basic frame-
work. The energy specific entities are integrated as subclasses of that
basic framework. This is common practice for many scientific ontolo-
gies. The OEO has adopted the widely used Basic Formal Ontology (BFO)
for this purpose [1]. BFO distinguishes between “occurrent” entities that
unfold in time and have temporal parts (e.g. processes, transformations,
flows), and “continuant” entities that continue to exist as the same in-
dividual over time (e.g. objects, organisms, devices). Among continuant
entities, BFO further distinguishes between those that are “independent”
and those that are “dependent” on other entities, such as qualities and
other attributes.

The OEO also adopts ontology design patterns and best practices, in
line with those of the broader scientific ontology community as repre-
sented by the OBO Foundry [58]. We derived best practice principles
concerning taxonomy, terminology and definitions from [1]. The ontol-
ogy has a modular organisation (described in Section 5.3). It follows — as
far as possible — a single asserted superclass taxonomic structure, which
means that every class in the OEO is allowed to have exactly one parent
class (monohierarchy). Additional superclasses are inferred from logical
axioms where needed, using automated reasoning. For example, water
has the parent class “portion of matter”, but because its axioms state
that it is renewable and can be used as an energy carrier, automated
reasoning infers a second parent class “renewable energy carrier”.

Each entity in the ontology is assigned a unique label and a text defi-
nition, while additional synonyms, comments, examples of usage and re-
lations to other entities may be included if needed. We label classes with
commonly used domain terminology, although, especially with ambigu-
ous terms, this is not always possible. To prevent confusion, each OEO-
owned class and relation comes with a distinct definition. For classes, we
choose the Aristotelian definition format, that consists of a reference to
the superclass (the genus) and a clear specification of what distinguishes
the members of the subclass from other members of the superclass (the
differentia).'®

Each entity in the ontology is assigned an alphanumeric primary
identifier in the namespace OEO:x (where x is a unique number). The
numbers are sequential and semantics-free, however, specific sub-ranges
are assigned to different ontology curators. We do this to prevent clashes
during concurrent editing.

5.3. Structure and submodules

The OEO consists of three main domain-specific modules (Fig. 2)
covering the following aspects of the energy systems analysis domain:

1. models and data (oeo-model),
2. social and economic aspects (oeo-social),
3. the physical side of energy systems (oeo-physical)

Furthermore, there is an additional module for classes and relations
that are needed in multiple modules (oeo-shared).

All modules are imported into the main ontology, which adds rela-
tions between the separate modules. We chose this modular approach

13 https://github.com/OpenEnergyPlatform/ontology/

14 https://openenergy-platform.org/ontology/

15 E.g., in the definition A square is a rectangle in which all sides have the same
length the superclass (genus) of “square” is “rectangle”. The differentia is the
property of having sides of equal length.
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because it makes maintenance easier: different groups can work on dif-
ferent files without risking clashes from concurrent changes. This ap-
proach also helps organise the content into logical sub-divisions within
the overall domain.

The oeo-model module comprises all entities related to data and mod-
els. Apart from the different types of models, most entities defined in
this module relate to either transformations of data or information enti-
ties. This includes for example model calculations and the data process-
ing methods used in energy system models. Information-related entities
that we include in this module are largely an imported subset of the In-
formation Artifact Ontology'®. This imported module includes the class
“information content entity”, with subclasses to define types of informa-
tion content entity, such as data items, documents, symbols and figures.
The OEO’s own information content entities are classified as subclasses
of these more general information entities. Examples include the sce-
nario class, different types of data descriptors, as well as assumptions
and constraints.

The oeo-social module depicts social, economic and political enti-
ties to describe the socio-economic aspects of energy systems: Included
are basic classes such as “population” and “organisation”. Sectors are
implemented as a combination of a “sector” class alongside overarching
“sector divisions”. The “sector divisions” delineate which sectors are rel-
evant within a particular context. Different kinds of roles are defined,
such as “agent”, “author”, “producer” and “user”. An important kind of
organisation for the domain are energy producers, implemented via the
class “organisational energy producer” and its subclasses. Economic en-
tities are also relevant for the domain of energy systems modelling. To
cover these, we decided to re-use the well-established existing Financial
Industry Business Ontology (FIBO'7) [3]. It provides a rich resource of
entities and relations pertaining to the domain of economics and finan-
cial markets that are important for many energy systems models. Since
FIBO does not use the BFO, we have adjusted the FIBO classes and def-
initions to add a fitting BFO classification. Thus, FIBO content is not
imported as-is but used as a source and annotated as cross-references to
OEO-owned classes. The selected economic terms include, for example,
“price”, “gross domestic product” and “exchange”.

The oeo-physical module includes all entities related to the physical
world of energy systems. Basic concepts like energy, power and matter
are classified as well as technical objects like power plants or batter-
ies. Many entities describe physical objects and are therefore subclasses
of BFO’s “material entity” class. Matter, materials and fuels are repre-
sented beneath the “portion of matter” class, like coal, peat, water and
methane. We use axioms that enable automated classification based on
logical equivalences. Thus, these materials are arranged into different
categories based on their properties and capabilities, such as greenhouse
gases or fuels. In particular, we categorised fuels into detailed subtypes
such as biofuels, renewable fuels or nuclear fuels. We defined the re-
lated entities for greenhouse gas emission and pollution as subclasses of
BFO’s “process”. The class “artificial object” contains technical devices
such as batteries and generators. We categorise power plants by their
inputs, e.g. “wind farms” or “biofuel power plants”. Further, different
kinds and usages of energies and transformation processes are part of
this module, “primary energy production” or “final energy consump-
tion”. To describe quantitative amounts of physical entities, the OEO
imports the Unit Ontology [22] into this module. The Unit Ontology de-
fines power units and energy units, thus usefully covering a part of the
energy systems domain.

The oeo-shared module includes those entities and relations that are
needed across multiple different sub-modules. For example, we define
here classes such as quantity values.

16 https://github.com/information-artifact-ontology/IAO/
17 https://spec.edmcouncil.org/fibo/
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Fig. 2. Submodules and imports of the OEO.

As we mentioned above and show in Fig. 2, the OEO imports parts
of other ontologies to avoid “re-inventing the wheel”. Aside from BFO,
we reuse significant parts of two other ontologies:

First, we import the Relations Ontology (RO) module which contains a
subset of the object properties defined by the Relations Ontology [57].
We chose to only include a subset of RO, as many of the relations are
not relevant for energy systems analysis. Examples of object properties
we import through this module are properties such as “has quality” and
“has disposition”, some basic properties such as “part of”, and prop-
erties to define temporal and spatial relations including “starts with”
and “located in”. Second, we reuse all metadata annotation classes de-
fined by the Information Artifact Ontology (IAO), e.g. “document” or
“reference”, in the oeo-model module. The IAO also contains unseful
standardised annotations, such as the “term tracker item” annotation,
which are reused. It is used to reference a GitHub issue and pull request
that defined or changed the entity, creating transparency by allowing
rapid access to further information and the history of a class, as well as
the discussions that took place around it. The annotations, along with
some important IAO classes that are useful for all modules, are imported
via the oeo-shared module.

We facilitate the reuse by utilising the ROBOT library [29] to extract
just the content we need, as further described in Section 6.1.

Fig. 3 illustrates some of the classes and properties of the OEO: be-
yond a mere taxonomy, there is a rich set of properties (relations) that
link classes. If a relation just affects classes of one specific module we
defined it in that particular module. Relations that link classes from dif-
ferent modules are defined in the parent OEO file.

6. Open collaborative development

We discussed in 5.2, that the OEO follows the OBO principles'®. We
thus develop the OEO in an interdisciplinary, collaborative, public and
open source'® way. Our chosen workflow reflects these characteristics,
and our specific focus is on openness: All our technical discussions and
developer meetings are held publicly on the project’s GitHub page?°.

18 http://obofoundry.org/principles/fp-000-summary.html
19 https://github.com/OpenEnergyPlatform/ontology/blob/dev/LICENSE
20 https://github.com/OpenEnergyPlatform/ontology/issues

Anyone is invited to contribute. Furthermore, we established a steering
committee comprising of experts from different related disciplines. The
steering committee guides the development of the OEO.

6.1. Ontology development

There are, broadly speaking, two different approaches to building a
domain ontology. One is that the ontology can be generated by means of
an automated approach using Al to analyse text corpora (e.g., scientific
publications or resources such as Wikipedia). This assembles relevant in-
formation about a certain domain and converts it into an ontology. The
second approach to creating an ontology is that human domain experts
collect and develop relevant entities manually, defining and interrelat-
ing them in the ontology. The latter approach is the one used for the
OEO development. Clearly, this is a slower process.

However, automatic approaches struggle to resolve noise and vary-
ing levels of quality in the source material, terminological ambiguities,
diverging terminologies and different points of view that are represented
in scientific texts. For this reason, no automatically generated ontology
has so far been successfully adopted as a scientific reference ontology.
In contrast human developers are able to identify these issues during
the ontology development process, and, thus, are able to develop a con-
sistent representation of the domain and a well-defined vocabulary. An-
other advantage of the manual approach is avoiding an unintentional
bias that might exist in specific data sources. Thus, the domain ontol-
ogy can be harnessed by other Al applications without reinforcing an
unwanted bias; see chapter 8.

Ontologies such as the OEO are developed to serve a scientific com-
munity. Their creation processes rely on workflows, standards and tech-
nologies which enable collaborative development. Many ontology de-
velopment methodologies have been proposed (e.g. [17,24,60,62]). In
many ways these are similar to the workflows and methodologies as-
sociated with open source software: they aim to make the ontology de-
velopment process reliable and repeatable, while focusing on quality
throughout the development. As exemplified by the recommendations
in a recent short article offering “ten simple rules” for ontology devel-
opment [10], one of the most important aspects of good ontology devel-
opment is to re-use existing ontology content as much as possible. This
allows for cumulative extension of available knowledge resources and
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Fig. 3. Overview of a subset of classes and properties of the OEO to illustrate how they are organised inside the OEO. A black arrow denotes “is a”, i.e. a subclass

relation.

prevents duplication of effort. Hence, we designed the OEO to import
relevant content where possible.

A clear approach to ontology versioning control and an ‘open’ license
are considered key elements of methodological recommendations (e.g.
in the OBO Foundry Principles [58]). Furthermore, these methodologies
typically include recommendations for setting the scope of the ontology,
and for its evaluation. The latter should be performed early, frequently
and openly. Finally, they recommend community engagement and doc-
umentation of design patterns.

To facilitate re-use and collaborative exchange of ontology content
between different communities and different domain areas, it is particu-
larly important that common standards are adhered to. To help facilitate
the development of such common standards, the OBO Foundry [58] is
an initiative in the biological and biomedical domain. It has brought to-
gether ontology authors to create a set of ontology design principles and
standards which can be semi-automatically verified. These design prin-
ciples and standards have also allowed the implementation of tools such
as the ontology library ROBOT [29] which automates many common on-
tology development tasks. While with the OEO we address a different
domain, many of the standards which we have adopted in its develop-
ment are based on those developed by the OBO Foundry. For example,
we re-use Foundry metadata standards and common relationships.

6.2. Git workflow

We develop the OEO publicly: its code and all discussions are avail-
able on GitHub. Our detailed manuals for usage?! and contribution®?

21 https://github.com/OpenEnergyPlatform/ontology/blob/dev/README.
md

22 https://github.com/OpenEnergyPlatform/ontology/blob/dev/
CONTRIBUTING.md

allow new collaborators and users a facilitated entry to the ontology.
The description of the workflow ensures quality and traceability of de-
cisions. Our workflow requires that every suggested change to the on-
tology has to be discussed in a GitHub issue before proceeding with an
actual change. We characterise issues categorised into one of four cate-
gories:

¢ adding new entity

e restructuring existing parts

» updating definitions of existing entities and
o other

Small changes need the agreement of at least two members of the de-
velopers, larger changes at least three. These members should include
one domain expert and one ontology expert. To reflect the diverse back-
ground of the OEOs developers and to facilitate rapid group formation
when tackling an issue, OEO developers join GitHub teams in their fields
of expertise. Currently we have teams for these domains: economy, mod-
elling, linked open data, meteorology and formal ontology. If agreement
is challenging to reach by discussing in a GitHub issue, we add it to the
agenda of the next ontology developer meeting. These meetings gener-
ally take place as online conferences. In addition to the teams of domain
experts there is also a team that carries out new releases.

Our development procedure is slow, but thorough by design. After
we agree on an issue’s solution, technical implementation of the change
can follow quickly along a specific protocol and can be carried out by
any member.

This development workflow is enhanced by several automated tests,
that ensure a certain level of quality standards. These checks include
syntactic constrains and an automated reasoner is used to check for log-
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ical consistency. Additionally, the pitfall checker OOPS?® and the OBO-
foundry tool ROBOT?* are used for quality assurance.

6.3. Community embedding

We supplement the workflow on GitHub with online developer meet-
ings. In these, we review progress and discuss challenging issues. We
schedule these meetings every month as jour-fixes, so we maintain a re-
liable schedule. Currently, these meetings are organised and prepared by
members of the research projects SzenarienDB, LOD-GEOSS and SIROP.
In cases where we cannot find agreement regarding an issue — neither
in GitHub nor in the developer meeting — we pass this issue and pos-
sible solutions to the OEO-Steering Committee (OEO-SC). The OEO-SC
discusses and provides a decision. Thus, the OEO-SC helps with direc-
tional decisions. While this is one focus, the other focus of the OEO-
SC is to raise awareness of the ontology and its adoption in active and
planned projects. The steering committee convenes approximately ev-
ery 3 months. To ensure a widespread acceptance of the committee and
the OEO, the OEO-SC members are experts from various domain-related
backgrounds and organisational contexts and with several years of ex-
perience in their respective domain.

To ensure an appreciative interaction between all OEO-developers,
we follow a self-chosen code of conduct. This code of conduct is based
on the principles of non-violent communication and is thus in line with
GitHub community guidelines. While the subject of the OEO is, in prin-
cipal, a neutral matter — having such a code of conduct in place helps
to concentrate on the issue and avoid heated discussions that may be
hurtful to some or all participants.

To date, we introduced the OEO to several hundred scientists
in the field: We presented it to the international openmod com-
munity which has approximately 550 registered users and to the
Forschungsnetzwerke-Energie (FNE). The latter has has more than 250
participants in Germany. Currently, a community of over 350 registered
Open Energy Platform users is exposed to the OEO’s development.

6.4. Testing and continuous integration

The large number and diversity of contributors makes regular checks
of coherence and consistency necessary. A number of automated and
semi-automated tests have thus been implemented. Protégé is used as
the default development tool for the OEO, and the OWL reasoners that
are supported by Protégé are used to ensure consistency. The Ontol-
Ogy Pitfall Scanner (OOPS!, [50]) defines a set of common pitfalls that
occur during ontology development processes, such as missing naming
conventions or missing annotations. OOPS! is used manually to ensure
that releases of the ontology do not violate these rules. As discussed
earlier, the ROBOT library is used in different parts of the ontology de-
velopment process, e.g. module extraction. It is also a central part of
our automated testing and continuous integration process as it is used
to validate the ontology against different OWL profiles®> and perform
a number of quality checks such as consistency and coherence®®. These
checks control the general quality of the ontology — but are agnostic with
respect to the specific domain. Therefore, we designed a number of com-
petency questions to ensure that the entities in the ontology match their
intended semantics (see Section 7.2). Each contribution to the ontol-
ogy is automatically checked against the ROBOT profiles, competency
questions and for consistency.

23 http://oops.linkeddata.es/

24 http://robot.obolibrary.org/

25 http://robot.obolibrary.org/validate-profile
26 http://robot.obolibrary.org/report
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7. Evaluation

In this section we evaluate three different aspects of the OEO. Firstly,
we evaluate its coverage of the domain. Secondly, we evaluate the qual-
ity of its axiomatisation with the help of competency questions. Lastly,
we evaluate the quality of the natural language definitions of the terms
in the OEO with the help of an inter-annotator agreement study. The
evaluation studies were influenced by the requirements of our use cases,
which are discussed in Section 8.

7.1. Evaluation I: Coverage study

Our first evaluation concerns whether the OEO contains the terms
that are needed for a typical use case. One intended use case of the
ontology is the annotation of various fact sheets and databases. Our on-
tology coverage study was based on scenario fact sheets that are being
developed within the project SzenarienDB. These fact sheets are used to
describe energy scenarios when the corresponding scenario data is pro-
vided to the OEP. The fact sheets include general information, such as
title and authors, publication format and license, as well as the temporal
and spatial analysis space of the energy models. Information on the per-
formed modelling are covered in detail by different fields for energy and
demand sectors, fuels, energy flows and environmental effects. Macro-
economic data such as population, gross domestic product and energy
prices are also covered.

We used the field names of the fact sheet form as input for a semi-
automated entity annotation task. In the first stage, five entity candi-
dates from the OEO were automatically retrieved for each field label
from the fact sheet form, based on label string similarity, more specifi-
cally, a combination of word tokenisation, soft Jaccard index on the to-
ken sets, and Levenshtein distance for softening the Jaccard index [16].
In the second stage, a group of ontology developers selected the correct
entities or combination of entities from the candidates. Furthermore,
they identified relevant entities from the ontology that were not dis-
covered by the automatic approach. We excluded fact sheet fields that
served as broad fallback descriptions (e.g. Other Fuels) from the evalua-
tion, as these are deliberately not included in the ontology. Introducing
such fallbacks in an ontology is considered to be bad design; for anno-
tation purposes the same expression can be formally achieved through
use of the parent class (e.g. Fuel) intersected with complements of sub-
classes (e.g. not Fossil Fuel). Further, ontology properties were excluded.

For the evaluation, a three-stage rating was applied to measure how
well a fact sheet entity was covered by one or a combination of OEO en-
tities: No match indicates that the OEO does not contain any matching
entities (yet) to annotate a given fact sheet field. Partial match indicates
that a fact sheet entity can be annotated in part by one or a combina-
tion of OEO entities. For example: “costs of coal” can only be expressed
partially, because “costs” was at the time of the study not yet included
in the OEO, whereas “(portion of) coal” was. Good match indicates a full
match.

The evaluation results of the coverage study are shown in Table 1 and
have been made publicly accessible®’. In total, the annotation of 153 fact
sheet fields was tested, as depicted in the first table row (“ALL”). More
than half of the fields (52%) have a good match, whereas 20% have no
match at all and cannot be described by the OEO yet.

About 30% of the fact sheet fields (46) relate to socioeconomic as-
pects of the domain. These refer to e.g. costs of fuels or prices for CO,
emissions, as well as populations or gross domestic products (GDP). As
described in Section 5, the OEO is structured into three modules. Until
recently, the main focus of the OEO development has been on the oeo-
physical module, with the other modules scheduled for becoming the
focus area during subsequent releases. Thus, the other modules have

27 https://doi.org/10.5281/zenodo.3870654
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OEO coverage for scenario fact sheet field names measured for ALL evaluated field names, and
for a subset excluding socio-economic related fields (ESE).

# fields  good match  partial match ~ no match  matches combined
ALL counts [ ratio 153 79 | 52% 43 | 28% 31/20% 122 ] 80%
ESE counts [ ratio 107 65 [ 60% 21/ 20% 21/20% 86/ 80%

not yet been comprehensively developed, and especially the oeo-social
module is still in a relatively early state of development.

To mitigate for this, the second row of the table (“ESE”) just considers
those fields (107) that are not related to socioeconomic aspects. Here,
about 60% of the concepts have a good match and 20% have no match
at all. Comparing the total counts of both results (“ALL” and “ESE”), it
can be seen that there are only 14 fields (30%) within the socioeconomic
part that have a good match. Since we will focus next on the develop-
ment of oeo-social, we expect significant improvements of this coverage
in the near future.

7.2. Evaluation II: Competency questions

Competency questions provide a methodology for capturing and
evaluating semantic requirements for an ontology [23]. As a first step,
ontology developers work together with domain experts to develop us-
age scenarios and document which kind of questions the ontology is
expected to answer in a given scenario. The combination of a scenario,
a question and its intended answer constitute a kind of proof obligation:
the formal representation of the scenario together with the axioms of
the ontology is supposed to logically entail the formal representation
of the intended answer. These proof obligations may be validated auto-
matically with the help of an automated theorem prover.

Competency questions are particularly useful for the development of
ontologies that have a well-specified role within the context of a larger
information system, because in these circumstances the usage scenarios
are restricted and well-defined and, thus, the development of these sce-
narios and the associated competency questions may drive the whole
ontology engineering process [47]. In particular, for these kinds of on-
tology development projects the competency questions may be used as
a measurement of a kind of completeness: if the ontology is able to an-
swer all competency questions, all of the documented requirements are
met, and, thus, the ontology development process has succeeded.

Reference ontologies such as the OEO are used to provide a shared
terminology for a large community. Hence, there is no specific applica-
tion context and no specific set of requirements for which the OEO is
built. Thus, there is no notion of “completeness” that could be evaluated
with the help of competency questions. Nevertheless, we found compe-
tency questions quite useful for the semantic evaluation of our ontol-
ogy, since they allow us to evaluate whether the axioms of the ontology
match the semantics that is intended by the domain experts. Some of
our competency questions reflect the consensus position on particularly
ambiguous or contentious terms. These competency questions enable us
to detect changes to the ontology that are in conflict with the result of
previous agreements. This kind of domain-specific semantic evaluation
complements the checks for consistency and coherence mentioned in
Section 6.4.

For example, the appropriate representation of fuel provided a chal-
lenge for the OEO. The design decisions that arose from this debate have
been transformed into competency questions and formalised in OWL. An
example of one of those questions is ”Is charcoal an energy carrier that
is solid under normal conditions?”. The HermiT reasoner is then used to
check the entailment relation between the ontology and the questions.
This process has been integrated into the continuous integration strat-
egy in order to assure that future developments within the ontology pre-
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serve these inferences. Currently, there are 50 competency questions?®;
of these currently 41 are answered successfully. The answers of the re-
maining nine competency questions are currently not entailed, because
of missing entities and axioms. In the future we will extend the ontology
in a way that will enable these inferences.

7.3. Evaluation III: Inter-annotator agreement study

The classes and definitions included in an ontology should be com-
prehensible and unambiguous. When annotating resources with terms
from an ontology for improved findability and query functionality, it is
crucial that different annotators are able to use these terms consistently.
Thus, one way to evaluate ontologies is to ask users to annotate texts
with terms from the ontology and measure the agreement of their an-
swers [61]. Thus, we used five text fragments from model fact sheets to
study whether energy domain experts can annotate them consistently.
We selected only text fragments where the annotation with an ontology
term was not obvious, i.e. there was no perfect match between portions
of the text fragment and labels of ontology terms, but rather several
only roughly matching ontology terms. Hence, the domain experts had
to read and understand the definitions of the terms to perform the an-
notation task.

For every text fragment, using the same string similarity technique
and manual refinement by ontology developers as in Section 7.1 above,
six ontology entities were selected. Together with the respective text
fragment, annotators were given a multiple choice among those six en-
tity definitions, plus a seventh field “None of the above”. Researchers at
institutes with energy systems analysis focus were identified as potential
participants of this study and were invited by email. Participants in the
study had no previous experience using the OEO.

Out of 34 participants, 20 completed the full survey. For this study,
we only include data from these 20 participants. Among these, two had
previous experience with ontologies, and 17 had at least one year of
experience with energy systems modelling. The questions and responses
have been made publicly accessible.>’

As a measure of inter-annotator agreement, we use an extension
of the kappa coefficient for multiple annotators with a multiple-choice
setup, developed by Kraemer [35].

Using this metric, the inter-annotator agreement for our study was
k = 0.668. According to the classification in [37] this indicates a ‘sub-
stantial’ level of inter-annotator agreement. Moreover, while it was also
possible to select “None of the above”, this was chosen only very few
times, which suggests that our set of candidate entities had reasonable
coverage for annotating the given text fragments.

However, there is still room for improvement in the agreement. No-
tably, participants did not follow our guidance to only select the best
match, and also picked broader matches. For example, if “greenhouse
gas emission” was chosen as a match, the participants were not supposed
to also choose “greenhouse gas”. The second annotation is redundant,
since the ontology already contains an axiom that states: “Greenhouse
gas emissions involve the emission of some greenhouse gas”. In practice,
adding this redundant annotation does not usually cause problems, but

28 https://github.com/OpenEnergyPlatform/ontology/tree/dev/tests/
competency_questions
29 https://doi.org/10.5281/zenodo.3870654
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in the context of this evaluation it made it more difficult to evaluate the
true agreement on the best match.

Participants also noted that in some cases the choices provided did
not contain an entity that would describe a text fragment optimally, and
for that reason there was no obvious ‘best’ match. Hence, the gaps in the
coverage of our domain that were detected in the first evaluation had
negative impacts on the inter-annotator agreement study.

We are in the process of revising the OEO according to the insights
from this evaluation. One major task is to increase the coverage of the
OEO in order to ensure that it provides all the terminology that is nec-
essary to describe energy scenarios and models. Equally important is to
improve the documentation of the entities in the ontology. Thus far the
main focus was on providing ontologically sound and logically correct
definitions. But to achieve better inter-annotator agreement we need to
add more explanations, examples and synonyms.

8. Use cases

Alongside the broad range of potential applications for the OEO, such
as summarising data sets, user categorisation or tagging, and semantic
search, we want to present four use cases for which the OEO is currently
being employed. All current use cases arise from the projects Szenar-
ienDB, LOD-GEOSS and SIROP.

8.1. Implementation: Scenario description

The coverage study was conducted on a dataset extracted from exist-
ing scenario factsheets. This is inspired by the inherently heterogeneous
structure of energy research results in energy scenarios. Published re-
sults, the datasets they used, and the implicit and explicit assumptions
that were involved are often only loosely connected, which hinders the
transparency and reproducibility of scientific results in the domain of
energy systems modelling [28]. A framework is needed that allows the
annotation of these scenarios and studies as well as their related ele-
ments such as the used and produced datasets or models that underlie
the results. The OEO specifies the general structures that can be used to
build such a system. A number of gaps that were identified in this anal-
ysis were addressed, which allows for a more exhaustive annotation of
scenarios and their related components. A collection of properties of
energy scenarios and energy studies that covers the most important in-
formation to adequately describe their properties and relations. These
properties were compiled into spreadsheets and filled with data for a
collection of studies and scenarios. An RDF knowledge graph that uses
the classes and relations defined in the OEO and other prominent vocab-
ularies (e.g. Dublin Core, FOAF) was created manually based on these
spreadsheets and the Open Energy Platform was extended by an addi-
tional section than enables users to view and edit the information stored
in the knowledge graph. This allows researchers to make their research
more publicly available and facilitates a more structured landscape of
datasets, energy models and scientific results.

8.2. Data representation for the core energy market data register

As of 2019 the German Federal Network Agency publishes the core
energy market data register (Marktstammdatenregister, German abbre-
viation MaStR). It is a complete list of all registered power stations in
Germany that connect to the grid. It includes all power stations, regard-
less of size: from large coal, lignite and water plants to small wind and
private solar power modules. The data are published under an open li-
cense>’. MaStR data is made available via an application programming
interface (API). This can be seen as improved accessibility, compared to
the more traditional way of downloading files. However, the API docu-

30 Creative Commons Attribution-NoDerivs 3.0 Germany (CC-BY-ND-3.0-DE)
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mentation®! is complex. The so called SOAP protocol that is used lacks
a standardised interaction model, so any access to the data needs has to
be set up manually and will only work for the MaStR API. This consti-
tutes a hurdle in terms of accessibility, which is amplified by limitations
on the number of data points that can be requested at once. This limit
is set to 10,000 requests per user per day>2. Consequently, for a large
number of users, data access is not barrier-free. Putting technical and
conceptual challenges aside, the provision of open and accessible data
is important and valuable, as it facilitates reproducible research. There-
fore, we decided to enhance this existing infrastructure: we developed
an open-source tool®? to extract data from the MaStR interface. We en-
hanced the extracted data with metadata and made it available on the
Open Energy Platform®*. There, users can download the data without
the need to register. We aim to make regular updates using the devel-
oped scripts. With the OEO we cover many entities that are important
to describe the domain of energy market data contained in MaStR. Such
entities include, for example, power plants and spatial regions. With
these entities we can annotate the MaStR dataset. The annotations al-
low conceptual queries that are closer to natural language and do not
depend on the actual representation of data. A user who wants to collect
the data of all power plants in the dataset has to query each of the indi-
vidual endpoints of the MaStR-API (GetAnlageEegWind, GetAnlageEegSo-
lar, ...). Such complex queries can be simplified by mapping the API to
an endpoint for the SPARQL Protocol® that uses the terms defined in
the ontology. This allows for much simpler queries, based on terms that
are commonly used and have agreed-upon definitions. Data on power
plants can be accessed via a simple SPARQL query SELECT 7answer
WHERE {7answer a oeo:powerplant}. The logical foundation
of the OEO allows not only the definition of those queries, but also the
enrichment of the dataset with logical dependencies. It is — for example
- possible to limit the above query to geothermal power plants by us-
ing the class geothermal power plant or one might query all power plants
that have a part that is a geothermal power unit. This flexibility allows
the definition of a versatile data interface that allows for complex data
aggregation but that is still easy to use and to understand.

8.3. Data annotation of an energy meteorological time series data set

Time series of different kinds serve as input data for, or result as out-
put data from energy system models. A common use-case is energy me-
teorological time series data: weather times series are fed into a model
which calculates times series of weather dependent energy generation
data, e.g. from wind farms or solar collectors. However, their consistent
and complete annotation is not trivial. Missing or ambiguous informa-
tion can lead to blunders when re-using or interpreting the data.

There are different — but nevertheless equivalent — ways of describ-
ing the content of a time series, and much work is spent on discovering
and adapting the definition of a specific energy meteorological time se-
ries, as habits in annotation vary across different domains. Sometimes
there are conventions in certain domains, but even those are not always
followed. A time series is defined as a set of data points (measured or
modelled values) referencing to a set of points or intervals in time (time
steps). These time steps in turn are defined by either a) a start and end-
ing time, or b) a time stamp and the length of the time step, as well as
the alignment of the time stamp within the time step (i.e. time stamp
indicates either the start, middle, or ending of the time step). Energy
system models use many different kinds of time series from several dis-

31 https://www.marktstammdatenregister.de/MaStRHilfe/files/webdienst/2019-
08_15%20Dokumentation%20MaStR%20Webdienste%20V1.2.18.pdf

32 https://www.marktstammdatenregister.de/MaStRHilfe/subpages/webdienst
html

33 https://github.com/OpenEnergyPlatform/open-MaStR

34 https://openenergy-platform.org/dataedit/view/supply/bnetza_eeg_
anlagenstammdaten

35 https://api.triplydb.com/s/U9p6sbrkg
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Fig. 4. Overview of time series annotation structure.

ciplines, e.g. meteorological data, time series of power generation and
consumption or economic time series, like energy prices. Thus, there is
no common way of defining time series. E.g. in meteorology it is a habit
to use the ending of an interval as a time stamp, as data loggers often
mark the time when the recording of the data is finished. However, this
is not a fixed requirement and using meteorological times series often
entails guessing whether the data provider followed this habit. For solar
data this can be solved by comparing it to the solar geometry, but for
other types of time series a verification is difficult. In climate science
there are at least the climate conventions®°.

Furthermore, the type of aggregation done on the measured or mod-
elled value (e.g. instantaneous, averaged or integrated values) for the
time steps has to be annotated. Within the climate conventions this
is done via the attributes bounds and cell_method. For example,
wind speeds and temperatures are usually recorded as an average over a
certain time interval. Solar irradiation is recorded as integrated energy
in kWh/m? and rain as integrated amount of water on a defined area
(1/m?). Wind gusts may be maximum values within a time interval. In
climate data sets, solar radiation is also often represented as an aver-
aged rate, namely irradiance in W/m?. As a rule of thumb, values that
describe a rate (e.g. power) are averages, while values that describe an
amount (e.g. energy) are integrated values. For a correct interpretation
this needs to be made explicit. Especially for solar radiation the values
in Wh/m? or W /m? are the same for typical time steps of one hour. How-
ever, they are conceptually different and need to be treated differently
in further processing of the data.

Another common source of misinterpretation in time series data are
time zones and daylight saving in the temporal information. Omission of
time zone information sometimes means local standard time, sometimes
UTC. These also need be made explicit in the documentation of the data.
Fig. 4 illustrates the annotation structure for such time series.

When time series are exchanged in the energy system modelling com-
munity, it currently takes a substantial effort to identify and record these
time series specifications. The OEO facilitates this process by provid-
ing concise and unambiguous definitions for the different annotation
concepts. It eventually allows a complete description and effortless in-
terdisciplinary identification of the structure and content of the energy
meteorological and other time series.

8.4. Interface homogenisation of the FINE energy system model framework
Within this use case we aim to directly connect the distributed

database architecture mentioned in Sect. 5.1 to an energy system model.
Using the OEO, we want to homogenise the annotation of data inven-

36 https://cfconventions.org

12

tories and the functional parameters expected or provided by model in-
terfaces in such a way that clear assignments can be made. At the same
time, we reduce the heterogeneity of interface descriptions and thus
minimise the effort of programmers and users to produce and under-
stand them. Currently the interfaces of several well-established energy
system models of different types are analysed to ensure a broad integra-
tion of the most important data categories.

The FINE Framework, for example, is an open source Python pack-
age®’ that provides functionalities for modelling, optimisation and anal-
ysis of high-resolution energy system models in terms of time, space
and technology [64]. Its four most important component classes, which
model source/sink, conversion, transmission and storage technologies,
are characterised by approx. 40 different attributes each. All of these at-
tributes must be initialised using static parameters or multidimensional
data series before model calculations can be carried out. Based on the
currently existing interface description®® in which the individual func-
tion parameters are named and defined, we currently explore to what
extent there is already coverage with the terminology of the OEO, and at
which points we have to adapt the interface or the ontology. Using these
specific model applications, we aim to develop best practices that can
be used to homogenise the connection of data to models and ultimately
the exchange of data between the models themselves and to promote
scientific exchange within the international energy system community.

9. Conclusion and future work

We reported on the development-in-progress of an open and
community-driven ontology for the energy systems analysis domain:
the Open Energy Ontology (OEO). While ontologies are not completely
novel to this domain, many pre-existing efforts were focused either on
a specific sub-area of the overall domain, or were developed as propri-
etary resources without general open accessibility. In energy systems
analysis, aside from the practical benefits for reuse and reproducibility,
openness has important consequences for transparency and the building
of trust and accountability. Increasingly, the teams that build open data
platforms such as Renewables Ninja3°, Open Power System Data*’ and
the Open Energy Platform*! work towards transparently allowing the
community to share data, align models and work together. This will be
further facilitated by the OEO. Transparency and trust are even more
important in the context of the advancing climate crisis, as the outputs

37 https://github.com/FZJ-IEK3-VSA/FINE

38 https://vsa-fine.readthedocs.io/en/master/componentsDoc.html

39 https://www.renewables.ninja/

40 https://open-power-system-data.org/

41 https://github.com/OpenEnergyPlatform/ontology/tree/dev/tests/
competency_questions
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of modelling efforts may be used in decision-making processes where
there are strong feelings about particular possibilities. There is a need
for robust, reproducible evidence that can be amalgamated and com-
pared across different modelling approaches and stakeholder groups.

We have seen that the amount and complexity of data is rapidly in-
creasing in the domain of energy systems analysis. As data driven meth-
ods such as machine learning, big data and AI are gaining increasing
importance, machine interpretable data annotation is a key enabler for
the increased use of these methods. The use and increased coverage of
the Open Energy Ontology will help to make use of the growing amount
of public data in the energy system.

A first evaluation in Section 7 shows that the OEO is an adequate
solution for a better annotation of data in the domain of energy systems
analysis.

The OEOQ is still under development, but already shows benefits in
use for some promising applications which we described in Section 8.
The development of an ontology for a specific domain is a consensus-
building process within the domain, not only extending and deepening
a shared comprehension of interrelated concepts but also promoting a
common understanding of what constitutes valid data. If a consensus
is formed on what conditions datasets have to meet to be considered
correct, this knowledge can be added to the OEO and be used for auto-
mated data validation. Therefore, further ontology development should
be based on broad participation within the domain. We hope that our
presentation of the ontology in this article will serve as an invitation to
others to join this development process and to start using the ontology
for the annotation of data sets, which then can be shared and used more
easily.

The development process is organised on GitHub, as described in
Section 6. It started within the SzenarienDB project which came to an
end by March 2021. It will be continued by the projects LOD-GEOSS and
SIROP. Further contributing projects are already planned and some of
the partners will use their institutional base to ensure the sustainability
and continuation of this effort.

We see the OEO as a basis for an enhanced collaboration of various
models and methods to take modelling of future energy systems to the
next level by enabling flexible coupling of models through well defined
data interfaces, as a part of the development of a data eco-system. By
networking different modelling approaches through defined data inter-
faces we can grasp some more of the complexity of the energy system
transformation process. The further we travel the road of transforming
our energy systems to sustainable ones, the more we need to consider
details and dependencies of the transformation process, which needs
the collaboration of models and methods within the domain of energy
systems analysis.
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