001     894342
005     20230217124407.0
024 7 _ |a 10.1103/PhysRevE.104.015216
|2 doi
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0061
|2 ISSN
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 2128/28514
|2 Handle
024 7 _ |a altmetric:102916923
|2 altmetric
024 7 _ |a 34412274
|2 pmid
024 7 _ |a WOS:000683066200001
|2 WOS
037 _ _ |a FZJ-2021-03190
082 _ _ |a 530
100 1 _ |a Li, Xiaofeng
|0 P:(DE-Juel1)164830
|b 0
|e Corresponding author
245 _ _ |a Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas
260 _ _ |a Woodbury, NY
|c 2021
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2021-07-30
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2021-07-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630414632_4816
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The production of polarized proton beams with multi-GeV energies in ultraintense laser interaction with targets is studied with three-dimensional particle-in-cell simulations. A near-critical density plasma target with prepolarized proton and tritium ions is considered for the proton acceleration. The prepolarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubblelike wakefield. The temporal dynamics of proton polarization is tracked via the Thomas-Bargmann-Michel-Telegdi equation and it is found that the proton polarization state can be altered by both the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |a ATHENA/HGF - ATHENA - Accelerator Technology Helmholtz Infrastructure (Athena-HGF_2019_2022)
|0 G:(DE-HGF)Athena-HGF_2019_2022
|c Athena-HGF_2019_2022
|x 2
536 _ _ |a Kinetic Plasma Simulation with Highly Scalable Particle Codes (jzam04_20190501)
|0 G:(DE-Juel1)jzam04_20190501
|c jzam04_20190501
|f Kinetic Plasma Simulation with Highly Scalable Particle Codes
|x 3
542 _ _ |i 2021-07-30
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gibbon, P.
|0 P:(DE-Juel1)132115
|b 1
700 1 _ |a Hützen, A.
|0 P:(DE-Juel1)167417
|b 2
700 1 _ |a Büscher, M.
|0 P:(DE-Juel1)131108
|b 3
700 1 _ |a Weng, S. M.
|0 0000-0001-7746-9462
|b 4
700 1 _ |a Chen, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sheng, Z. M.
|0 0000-0002-8823-9993
|b 6
773 1 8 |a 10.1103/physreve.104.015216
|b American Physical Society (APS)
|d 2021-07-30
|n 1
|p 015216
|3 journal-article
|2 Crossref
|t Physical Review E
|v 104
|y 2021
|x 2470-0045
773 _ _ |a 10.1103/PhysRevE.104.015216
|g Vol. 104, no. 1, p. 015216
|0 PERI:(DE-600)2844562-4
|n 1
|p 015216
|t Physical review / E
|v 104
|y 2021
|x 2470-0045
856 4 _ |u https://juser.fz-juelich.de/record/894342/files/INV_21_AUG_006395.pdf
856 4 _ |u https://juser.fz-juelich.de/record/894342/files/PhysRevE.104.015216.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894342
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164830
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132115
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167417
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131108
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and Technologies
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2018
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1016/0030-4018(85)90120-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.81.1229
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.85.751
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.43.267
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.122.084801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.116.205002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-018-03063-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.90.035002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/hpl.2020.35
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.71.959
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.114.887
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.60.701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.122.154801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.123.174801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.121.083001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.122.214801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/ab2fd7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4865096
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/hpl.2018.73
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/S0217751X19420284
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.102.011201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.76.055402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5033991
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0741-3335/57/11/113001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/68/9/R01
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/117514a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 R. W. Hockney
|y 1988
|2 Crossref
|t Computer Simulation Using Particles
|o R. W. Hockney Computer Simulation Using Particles 1988
999 C 5 |1 C. K. Birdsall
|y 2004
|2 Crossref
|t Plasma Physics via Computer Simulation
|o C. K. Birdsall Plasma Physics via Computer Simulation 2004
999 C 5 |a 10.1103/PhysRevAccelBeams.23.064401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4825228
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.124.114801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.865171
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.96.043407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.98.023417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.84.1177
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.17815/jlsrf-6-174
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21