001     894359
005     20240711085645.0
024 7 _ |a 10.1007/s11666-021-01235-6
|2 doi
024 7 _ |a 1059-9630
|2 ISSN
024 7 _ |a 1544-1016
|2 ISSN
024 7 _ |a 2128/29350
|2 Handle
024 7 _ |a WOS:000675746800001
|2 WOS
037 _ _ |a FZJ-2021-03194
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Zimmermann, Stephan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Characterization of an Axial-Injection Plasma Spray Torch
260 _ _ |a Boston, Mass.
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638854543_10164
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Axial III™ torch is a multiple-arc plasma generator with a set of three single cathode–anode units, which is still of significant importance, especially in the field of suspension plasma spraying. The division of the plasma generator into three spatially separated systems allows for central feedstock injection with improved deposition rates and efficiencies. In this work, several diagnostic methods were applied to characterize the plasma jet of an Axial III™ spray torch to further the understanding of this spray system. One important result was that the plasma temperature in the jet exhibits a triple distribution with three straight lobes arranged around the jet axis. As with every plasma torch, the total plasma power is subject to fast temporal variations. Power variations were clearly seen in the plasma jet even though it could have been anticipated that the triple jet characteristics and the natural fluctuations of the arcs generated by the three single cathode–anode units would be less pronounced after merging the three plasma streams. Unaffected by this it is nevertheless likely that the axially injected feedstock particles are caged effectively in the core of the plasma jet. Hence, the total electrical torch power and the uniformity of the single unit’s powers must be monitored to realize possible degradation and asymmetries in the plasma temperature distribution, which may influence deposition parameters.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 1
|e Corresponding author
700 1 _ |a Rauwald, Karl-Heinz
|0 P:(DE-Juel1)129653
|b 2
|u fzj
700 1 _ |a Schein, Jochen
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1007/s11666-021-01235-6
|0 PERI:(DE-600)2047715-6
|p 1724–1736
|t Journal of thermal spray technology
|v 30
|y 2021
|x 1544-1016
856 4 _ |u https://juser.fz-juelich.de/record/894359/files/Zimmermann2021_Article_CharacterizationOfAnAxial-Inje.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894359
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129653
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J THERM SPRAY TECHN : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21