000894409 001__ 894409
000894409 005__ 20240712113148.0
000894409 0247_ $$2doi$$a10.1016/j.electacta.2021.139019
000894409 0247_ $$2ISSN$$a0013-4686
000894409 0247_ $$2ISSN$$a1873-3859
000894409 0247_ $$2Handle$$a2128/28754
000894409 0247_ $$2altmetric$$aaltmetric:112036471
000894409 0247_ $$2WOS$$aWOS:000692096000013
000894409 037__ $$aFZJ-2021-03209
000894409 082__ $$a540
000894409 1001_ $$0P:(DE-Juel1)185067$$aHuang, Jun$$b0$$ufzj
000894409 245__ $$aThe Rate-Determining Term of Electrocatalytic Reactions with First-Order Kinetics
000894409 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000894409 3367_ $$2DRIVER$$aarticle
000894409 3367_ $$2DataCite$$aOutput Types/Journal article
000894409 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633939786_25739
000894409 3367_ $$2BibTeX$$aARTICLE
000894409 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894409 3367_ $$00$$2EndNote$$aJournal Article
000894409 520__ $$aThe quest to find highly active electrocatalysts for electrochemical energy conversion devices requires mechanistic concepts to guide activity analysis, the most commonly employed ones being the rate-determining step (RDS) and the potential-determining step (PDS). Here we present a generalized concept, the rate-determining term (RDT). The RDT concept is not simply a semantic change but a nontrivial improvement over the RDS and PDS concepts, as it incorporates the detailed kinetics and thermodynamics of multistep electrocatalytic reactions. The theoretical basis of the RDT concept is steady-state microkinetic modelling, for which we put forward a unified and compact formalism for electrocatalytic reactions with first-order kinetics. The new formalism allows us to write the expression for the rate determining term of the reaction in general and analytical form. The RDT concept is then used to derive analytical expressions for the Tafel slope and the volcano plot of activity that can be used in the studies of multistep electrocatalytic reactions. Thereafter, the efficacy of the RDT concept is demonstrated for two important case studies, the oxygen evolution reaction and the carbon dioxide reduction reaction. Fundamental insights into the origins of the potential-dependent Tafel slope are obtained. An important consequence, gleaned from this analysis, is that one cannot infer a RDS from measured Tafel slopes. In addition, kinetic factors are shown to exert a notable influence on the slopes and apex location in volcano plots of activity. The present RDT is anticipated to be a powerful analytical tool for multistep electrocatalytic reactions with first-order kinetics.
000894409 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000894409 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894409 7001_ $$0P:(DE-Juel1)180589$$aZhu, Xinwei$$b1$$ufzj
000894409 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b2$$eCorresponding author
000894409 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2021.139019$$gp. 139019 -$$p139019 -$$tElectrochimica acta$$v393$$x0013-4686$$y2021
000894409 8564_ $$uhttps://juser.fz-juelich.de/record/894409/files/Invoice_OAD0000136923.pdf
000894409 8564_ $$uhttps://juser.fz-juelich.de/record/894409/files/1-s2.0-S0013468621013098-main.pdf$$yOpenAccess
000894409 8767_ $$8OAD0000136923$$92021-08-04$$d2021-08-11$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200170565
000894409 909CO $$ooai:juser.fz-juelich.de:894409$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185067$$aForschungszentrum Jülich$$b0$$kFZJ
000894409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180589$$aForschungszentrum Jülich$$b1$$kFZJ
000894409 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
000894409 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000894409 9141_ $$y2021
000894409 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000894409 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000894409 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2019$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894409 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000894409 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000894409 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894409 920__ $$lyes
000894409 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000894409 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000894409 9801_ $$aAPC
000894409 9801_ $$aFullTexts
000894409 980__ $$ajournal
000894409 980__ $$aVDB
000894409 980__ $$aUNRESTRICTED
000894409 980__ $$aI:(DE-Juel1)IEK-13-20190226
000894409 980__ $$aI:(DE-82)080011_20140620
000894409 980__ $$aAPC
000894409 981__ $$aI:(DE-Juel1)IET-3-20190226