000894410 001__ 894410
000894410 005__ 20240712100905.0
000894410 0247_ $$2doi$$a10.5194/acp-21-11689-2021
000894410 0247_ $$2ISSN$$a1680-7316
000894410 0247_ $$2ISSN$$a1680-7324
000894410 0247_ $$2Handle$$a2128/28556
000894410 0247_ $$2altmetric$$aaltmetric:111302331
000894410 0247_ $$2WOS$$aWOS:000683773600002
000894410 037__ $$aFZJ-2021-03210
000894410 082__ $$a550
000894410 1001_ $$0P:(DE-HGF)0$$aWeigel, Ralf$$b0$$eCorresponding author
000894410 245__ $$aIn situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 1: Summary of StratoClim results
000894410 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000894410 3367_ $$2DRIVER$$aarticle
000894410 3367_ $$2DataCite$$aOutput Types/Journal article
000894410 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638458188_23009
000894410 3367_ $$2BibTeX$$aARTICLE
000894410 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894410 3367_ $$00$$2EndNote$$aJournal Article
000894410 520__ $$aDuring the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal, with eight mission flights of the M-55 Geophysica in the upper troposphere–lower stratosphere (UTLS) of the Asian monsoon anticyclone (AMA) over northern India, Nepal, and Bangladesh. More than 100 events of new particle formation (NPF) were observed. In total, more than 2 h of flight time was spent under NPF conditions as indicated by the abundant presence of nucleation-mode aerosols, i.e. with particle diameters dp smaller than 15 nm, which were detected in situ by means of condensation nuclei counting techniques. Mixing ratios of nucleation-mode particles (nnm) of up to ∼ 50 000 mg−1 were measured at heights of 15–16 km (θ ≈ 370 K). NPF was most frequently observed at ∼ 12–16 km altitude (θ ≈ 355–380 K) and mainly below the tropopause. Resulting nnm remained elevated (∼ 300–2000 mg−1) up to altitudes of ∼ 17.5 km (θ ≈ 400 K), while under NPF conditions the fraction (f) of sub-micrometre-sized non-volatile residues (dp > 10 nm) remained below 50 %. At ∼ 12–14 km (θ ≈ 355–365 K) the minimum of f (< 15 %) was found, and underneath, the median f generally remains below 25 %. The persistence of particles at nucleation-mode sizes is limited to a few hours, mainly due to coagulation, as demonstrated by a numerical simulation. The frequency of NPF events observed during StratoClim 2017 underlines the importance of the AMA as a source region for UTLS aerosols and for the formation and maintenance of the Asian tropopause aerosol layer (ATAL). The observed abundance of NPF-produced nucleation-mode particles within the AMA is not unambiguously attributable to (a) specific source regions in the boundary layer (according to backward trajectory analyses), or (b) the direct supply with precursor material by convective updraught (from correlations of NPF with carbon monoxide), or (c) the recent release of NPF-capable material from the convective outflow (according to air mass transport times in the tropical tropopause layer, TTL). Temperature anomalies with ΔT of 2 K (peak-to-peak amplitude), as observed at a horizontal wavelength of ∼ 70–100 km during a level flight of several hours, match with NPF detections and represent an additional mechanism for local increases in supersaturation of the NPF precursors. Effective precursor supply and widely distributed temperature anomalies within the AMA can explain the higher frequency of intense NPF observed during StratoClim 2017 than all previous NPF detections with COPAS (COndensation PArticle counting System) at TTL levels over Brazil, northern Australia, or West Africa.
000894410 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000894410 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x1
000894410 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894410 7001_ $$0P:(DE-Juel1)184748$$aMahnke, Christoph$$b1
000894410 7001_ $$0P:(DE-HGF)0$$aBaumgartner, Manuel$$b2
000894410 7001_ $$0P:(DE-HGF)0$$aDragoneas, Antonis$$b3
000894410 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b4
000894410 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b5
000894410 7001_ $$0P:(DE-HGF)0$$aViciani, Silvia$$b6
000894410 7001_ $$00000-0003-1349-6650$$aD'Amato, Francesco$$b7
000894410 7001_ $$0P:(DE-Juel1)180723$$aBucci, Silvia$$b8
000894410 7001_ $$00000-0002-3756-7794$$aLegras, Bernard$$b9
000894410 7001_ $$0P:(DE-HGF)0$$aLuo, Beiping$$b10
000894410 7001_ $$00000-0002-4774-9380$$aBorrmann, Stephan$$b11
000894410 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-11689-2021$$gVol. 21, no. 15, p. 11689 - 11722$$n15$$p11689 - 11722$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000894410 8564_ $$uhttps://juser.fz-juelich.de/record/894410/files/acp-21-11689-2021.pdf$$yOpenAccess
000894410 909CO $$ooai:juser.fz-juelich.de:894410$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184748$$aForschungszentrum Jülich$$b1$$kFZJ
000894410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b4$$kFZJ
000894410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b5$$kFZJ
000894410 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000894410 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
000894410 9141_ $$y2021
000894410 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894410 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894410 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894410 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894410 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894410 920__ $$lyes
000894410 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000894410 9801_ $$aFullTexts
000894410 980__ $$ajournal
000894410 980__ $$aVDB
000894410 980__ $$aI:(DE-Juel1)IEK-7-20101013
000894410 980__ $$aUNRESTRICTED
000894410 981__ $$aI:(DE-Juel1)ICE-4-20101013