000894423 001__ 894423
000894423 005__ 20250314084119.0
000894423 0247_ $$2doi$$a10.1134/S1995080221070192
000894423 0247_ $$2ISSN$$a1818-9962
000894423 0247_ $$2ISSN$$a1995-0802
000894423 0247_ $$2Handle$$a2128/28515
000894423 0247_ $$2WOS$$aWOS:000683368000009
000894423 037__ $$aFZJ-2021-03216
000894423 041__ $$aEnglish
000894423 082__ $$a510
000894423 1001_ $$0P:(DE-HGF)0$$aNikitenko, D. A.$$b0$$eCorresponding author
000894423 245__ $$aInfluence of Noisy Environments on Behavior of HPC Applications
000894423 260__ $$aHeidelberg$$bSpringer$$c2021
000894423 3367_ $$2DRIVER$$aarticle
000894423 3367_ $$2DataCite$$aOutput Types/Journal article
000894423 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1629265810_29685
000894423 3367_ $$2BibTeX$$aARTICLE
000894423 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894423 3367_ $$00$$2EndNote$$aJournal Article
000894423 520__ $$aMany contemporary HPC systems expose their jobs to substantial amounts of interference, leading to significant run-to-run variation. For example, application runtimes on Theta, a Cray XC40 system at Argonne National Laboratory, vary by up to 70%, caused by a mix of node-level and system-level effects, including network and file-system congestion in the presence of concurrently running jobs. This makes performance measurements generally irreproducible, heavily complicating performance analysis and modeling. On noisy systems, performance analysts usually have to repeat performance measurements several times and then apply statistics to capture trends. First, this is expensive and, second, extracting trends from a limited series of experiments is far from trivial, as the noise can follow quite irregular patterns. Attempts to learn from performance data how a program would perform under different execution configurations experience serious perturbation, resulting in models that reflect noise rather than intrinsic application behavior. On the other hand, although noise heavily influences execution time and energy consumption, it does not change the computational effort a program performs. Effort metrics that count how many operations a machine executes on behalf of a program, such as floating-point operations, the exchange of MPI messages, or file reads and writes, remain largely unaffected and—rare non-determinism set aside—reproducible. This paper addresses initial stage of an ExtraNoise project, which is aimed at revealing and tackling key questions of system noise influence on HPC applications.
000894423 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000894423 536__ $$0G:(GEPRIS)449683531$$aExtraNoise – Leistungsanalyse von HPC-Anwendungen in verrauschten Umgebungen (449683531)$$c449683531$$x1
000894423 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x2
000894423 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894423 7001_ $$0P:(DE-HGF)0$$aWolf, F.$$b1
000894423 7001_ $$0P:(DE-Juel1)132199$$aMohr, B.$$b2$$ufzj
000894423 7001_ $$0P:(DE-HGF)0$$aHoefler, T.$$b3
000894423 7001_ $$0P:(DE-HGF)0$$aStefanov, K. S.$$b4
000894423 7001_ $$0P:(DE-HGF)0$$aVoevodin, Vad. V.$$b5
000894423 7001_ $$0P:(DE-HGF)0$$aAntonov, A. S.$$b6
000894423 7001_ $$0P:(DE-HGF)0$$aCalotoiu, A.$$b7
000894423 773__ $$0PERI:(DE-600)2008068-2$$a10.1134/S1995080221070192$$gVol. 42, no. 7, p. 1560 - 1570$$n7$$p1560 - 1570$$tLobachevskii journal of mathematics$$v42$$x1818-9962$$y2021
000894423 8564_ $$uhttps://juser.fz-juelich.de/record/894423/files/ExtraNoise_v1.pdf$$yOpenAccess
000894423 8564_ $$uhttps://juser.fz-juelich.de/record/894423/files/Nikitenko2021_Article_InfluenceOfNoisyEnvironmentsOn.pdf$$yRestricted
000894423 909CO $$ooai:juser.fz-juelich.de:894423$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894423 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Technische Universität Darmstadt$$b1
000894423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132199$$aForschungszentrum Jülich$$b2$$kFZJ
000894423 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000894423 9141_ $$y2021
000894423 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000894423 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-05
000894423 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000894423 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-09-05$$wger
000894423 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894423 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000894423 920__ $$lyes
000894423 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894423 980__ $$ajournal
000894423 980__ $$aVDB
000894423 980__ $$aI:(DE-Juel1)JSC-20090406
000894423 980__ $$aUNRESTRICTED
000894423 9801_ $$aFullTexts