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Abstract—Many contemporary HPC systems expose their jobs to substantial amounts of
interference, leading to significant run-to-run variation. For example, application runtimes
on Theta, a Cray XC40 system at Argonne National Laboratory, vary by up to 70%, caused
by a mix of node-level and system-level effects, including network and file-system congestion
in the presence of concurrently running jobs. This makes performance measurements generally
irreproducible, heavily complicating performance analysis and modeling. On noisy systems,
performance analysts usually have to repeat performance measurements several times and
then apply statistics to capture trends. First, this is expensive and, second, extracting trends
from a limited series of experiments is far from trivial, as the noise can follow quite irregular
patterns. Attempts to learn from performance data how a program would perform under
different execution configurations experience serious perturbation, resulting in models that
reflect noise rather than intrinsic application behavior. On the other hand, although noise
heavily influences execution time and energy consumption, it does not change the computational
effort a program performs. Effort metrics that count how many operations a machine executes
on behalf of a program, such as floating-point operations, the exchange of MPI messages, or file
reads and writes, remain largely unaffected and—rare non-determinism set aside—reproducible.
This paper addresses initial stage of an ExtraNoise project, which is aimed at revealing and
tackling key questions of system noise influence on HPC applications.
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1. INTRODUCTION

High-performance computing is a key technology of the 21st century. Numerous application
examples, ranging from the improved understanding of matter to the discovery of new materials
and from the study of biological processes to artificial intelligence, give evidence of its tremendous
potential. Mastery of this technology will decide not only on the economic competitiveness of a
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society but will ultimately influence everything that depends on it, including the society’s welfare
and stability. Moreover, there is broad consensus that high-performance computing is indispensable
to address major global challenges of mankind such as climate change and energy consumption.
However, the demand for computing power needed to solve problems of such enormous complexity
is almost insatiable. In their effort to answer this demand, supercomputer vendors work alongside
computing centers to find good compromises between technical requirements, tight procurement
and energy budgets, and market forces that dictate the prices of key components. The results are
sophisticated architectures that combine unprecedented numbers of processor cores into a single
coherent system, leveraging commodity parts or at least their designs to lower the costs where in
agreement with design objectives.

Exploiting the full power of HPC systems has always been hard and is becoming even harder
as the complexity and size of systems and applications continues to grow. On the other hand, the
savings potential in terms of energy and CPU hours that application optimization can achieve is
enormous [1|. As the number of available cores increases at tremendous speed, reaping this potential
is becoming an economic and scientific obligation. For example, a hypothetical exascale system with
a power consumption of 20 MW (very optimistic estimate) and 5,000 h of operation per year would
— assuming an energy price of EUR 0.1 per kWh — produce an energy bill of EUR 10M per year.

Ever-growing application complexity across all domains requires a continuous focus on perfor-
mance to productively use the large-scale machines that are being procured. However, designing such
large applications is a complex task demanding foresight since they require large time investments in
development and verification and are therefore meant to be used for decades. Thus, it is important
that the applications be efficient and potential bottlenecks are identified early in their design as
well as throughout their whole life cycle. Continuous performance analysis starting in early stages
of the development process is therefore an indispensable prerequisite to ensure early and sustained
productivity.

In the past, powerful performance-analysis tools such as TAU [2|, HPCToolkit [3|, or Score-
P/Scalasca [4][5] helped application developers achieve performance objectives. The typical
workflow suggested by their designers is the following.

A user first instruments the code, and then executes it in the desired execution configuration,
producing performance data usually in the form of profiles, which summarize execution time,
possibly alongside other performance metrics, across the entire execution, or traces, which log
performance-critical events with timestamps. Subsequently, interactive or fully automatic analyses
pinpoint and explain performance problems, giving hints of how to remove them. Repeating the
procedure with an optimized version of the code and comparing the results shows how effectively
the code has been tuned. This methodology relies on the implicit assumption that shorter execution
time (or less energy consumption) means better performance. This worked well, for example, on
systems from the discontinued IBM Blue Gene series, which exposed their application to stable
execution environments with only negligible degrees of interference, giving more or less consistent
performance results across runs and allowing conclusions with statistical significance based on a few
runs at most.

However, increasing performance variability challenges this classic tuning methodology. For
example, Chunduri et al. report that execution times of some applications on Theta, a Xeon-
Phi-based Cray XC system at Argonne National Laboratory, deviate from the minimum by up to
70% [6]. In general, performance variability, the difference between execution times across repeated
runs of an application in the same execution environment [7], is the consequence of node-level effects,
such as OS noise, dynamic frequency scaling, manufacturing variability, or shared-cache contention,
and system-level effects, such as network and file-system congestion in the presence of concurrently
running jobs. To some extent, the interference caused by contention for shared resources occurs by
design because resource sharing is expected to improve system utilization. For example, Dragonfly
networks [8] adaptively route traffic through less frequented partitions of the topology, potentially
slowing down the communication of other jobs [9]. Power capping is another, actually desired
feature that, as a side effect, introduces load imbalance in otherwise balanced computations [10],
prolonging executions in unpredictable ways. Moreover, deepening storage hierarchies (e.g., with
burst buffers as an intermediate layer) are on the one hand introduced to remove pressure from
the backend file system, but on the other make I/O performance highly volatile. These examples
demonstrate that performance variability is the price system designers pay to satisfy important
optimization objectives and is therefore unlikely to disappear in the near future.
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In addition to the immediate negative effects this variability has on performance, including load
imbalance and jobs aborted because their execution time suddenly exceeded the scheduler-allowed
maximum, variability also complicates performance analysis. Execution time can no longer be
reported as a single number, but must rather be presented as a probability distribution. Drawing
statistically significant conclusions requires many more experiments, substantially increasing both
the cost and effort needed to motivate and validate tuning decisions. Because of the irregularity of
interference from the perspective of the affected job, performance analysts often refuse to consider
it an intrinsic part of application execution, which is why they wish to factor it out. Especially
data-driven performance modeling [11] suffers as the resulting scaling models may reflect random
noise and loose predictive power.

2. STATE OF THE ART

For many years now, performance interference—because of its perceived random nature often
referred to as noise—has received considerable attention. In their seminal paper titled The Case
of the Missing Supercomputer Performance [12], Petrini et al. describe how OS noise reduced
application performance by a factor of two. Depending on their source, noise patterns vary in
terms of intensity and frequency, ranging from continuous high-frequency background noise (e.g.,
OS noise) with low amplitude to more irregular forms with occasionally very high impact (e.g.,
file-system contention).

Strategies to reduce OS noise include core specialization [6] or improved system designs. For
example, to lower OS noise, Cray and IBM introduced new kernel designs with significantly less
interference potential, either by reducing daemons and improving memory allocation [13] or by
creating a new lightweight kernel from bottom up [14]. On Dragonfly networks, optimized job
placement can help mitigate the worst incidents of interference [9], while I/O-aware scheduling
is seen as an instrument to tackle file-system congestion [15]. Nevertheless, as recent studies
suggest [6, 7, 10, 16|, performance variability is far from being eliminated, in spite of these attempts,
and will remain an active area of research in the foreseeable future. In fact, Patki et al. even
identified a tradeoff between performance optimality and reproducibility [7]. In addition to external
interference, performance variability can also be caused by changes of the execution environment
outside the control of the user such as different process-to-node mappings [17| or thread-to-core
mappings on NUMA systems, which are per-se independent of noise, but may change the sensitivity
of jobs to noise.

2.1. Performance measurement & analysis in noisy environments.

Porting, adapting and tuning applications to today’s complex systems is a complicated and time-
consuming task. Sophisticated integrated performance measurement, analysis, and optimization
capabilities are required to efficiently utilize such systems.

Research on parallel performance tools has a long history. First tools appeared at the same
time as the first parallel computer systems back in the 1980s and early 90s. Meanwhile, many
performance instrumentation, measurement, analysis and visualization tools exist [18], e.g. TAU [2],
HPCToolkit [3]|, Extrae/Paraver [19]|, Score-P [4], Vampir [20], and Scalasca |5]. These stand-
out compared to other research tools as they are portable, scalable, versatile (i.e., they allow the
performance analysis of all levels of today’s HPC systems: message passing between nodes, multi-
threading and multi-tasking inside nodes, and offloading to accelerators), and supported (i.e., there
are well-established groups or organizations behind them which maintain and further develop them).

All measurement-based tools use the performance analysis workflow mentioned earlier. It relies
on the fact that measurements can be repeated reliably; otherwise it is difficult, and in some cases
impossible, to distinguish whether changes in the measurement data are the results of the tuning
efforts of the developer or were produced by a noisy environment and system. The tools also lack
information on the resource usage of concurrently running jobs that may possible interfere with
the target program. Current best practice is noise avoidance or noise reduction, i.e., performing
experiments in non-shared and controlled environments. If this is not possible, performance analysts
have to perform a larger number of measurements, and then hope that the effects of noise in the
measured data can be removed with the help of statistical methods. However, correctly designing
insightful experiments to measure and report performance numbers is a challenging task. Hoefler and
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Belli [21] summarize the best practices for scientific benchmarking of parallel computing systems,
describe statistically sound analysis and reporting techniques, and present simple guidelines for
experimental design in parallel computing.

There are only a few performance tools that try to help analyze noisy data. Typically they
focus on network interference. The Ravel tool [22] uses a new trace visualization approach based on
transforming the event history into logical time inferred directly from happened-before relationships,
which better preserves and highlights event patterns and dependencies between processes. The
original timing data is then encoded through color, leading to a more intuitive visualization. Zhou
Tong et al. [23] present a novel trace-based analysis tool that rapidly classifies an MPI application
as bandwidth-bound, latency-bound, load-imbalance-bound, or computation-bound for different
interconnection networks. The tool uses an extension of Lamport’s logical clock to track application
process in the trace replay to infer the application characteristics of an application. Like the Ravel
tool, it still uses real-time timestamps and other metrics to measure and model non-communication
events, and therefore this part of the analysis is still sensitive to noise. In addition, both tools only
work with MPI applications.

2.2.  Performance modeling in noisy environments.

Classic performance analysis allows the programmer to observe application performance in actual
runs, which can become expensive when exploring a larger configuration space, e.g., by varying
core count and problem size, and impossible when the target platform is not yet available. One
option to explore the performance on emerging architectures that exist only as blueprint is to use
simulation tools [24], however, depending on the level of detail, building simulators and running
simulations also can be quite expensive. Performance models, in contrast, allow the configuration
space of an application to be explored much faster, while also giving access to unavailable execution
configurations and theoretical platform designs. A performance model is a formula that expresses
a performance metric of interest such as execution time or energy consumption as a function of one
or more execution parameters such as the size of the input problem or the number of processors.
Note that the popular roofline model [25], which visualizes a hardware-constrained performance
ceilings for varying values of operational intensity, is just a very specialized instantiation of this
definition. Although often based on simplifying assumptions, performance models offer valuable
insight at the small cost of evaluating an arithmetic expression. Hoefler et al. describe a six-step
process to guide the (manual) creation of analytical performance models [26]. However, deriving
such models analytically from the code is still so laborious that too many application developers
shy away from the effort.

To ease the burden, performance modeling techniques with varying degrees of automation have
been introduced [27-29]. Many state-of-the-art tools support empirical performance modeling, a
method which derives performance models from measurements [30-32|, an approach that is also
popular in application areas outside HPC such as databases [33] or software product lines [34].
To generate performance models from measurements, a range of techniques is applied [35], many
of them classifiable as machine learning, including regression, artificial neural networks, and other
statistical methods.

The primary way of addressing noise is the same as for performance measurement in general:
repeating measurements and trying to find a representative value such as the minimum or
median. Another successful approach that comes on top is the introduction of a prior into the
learning process, limiting the set of discoverable functions, for example, to polynomials and/or
logarithms [11, 30, 31]. However, our experience suggests that this is not enough when run-to-run
variation is high — especially if the performance model has multiple parameters [36]. Recently,
Duplyakin et al. [37] applied Gaussian process regression (GPR) [38] to the field of performance
modeling. Here, selecting a higher absolute value for the noise value hyper-parameter can help
GPR to better cope with noisy data, reducing the risk of overfitting, but at the cost of generating
“smoother” models that do not necessarily capture all behaviors present in the data.
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2.3.  Characterization of noise & understanding the noise sensitivity of applications.

Studies of noise on HPC systems and its influence on parallel program execution [39-42| consider
different sources of noise independently, but do not take into account the possible synchronization
of noise events across the system. Afzal et al. [40] analyze how a single noise event spreads across
the system, but do not extend their work to several or periodic events. However, some events in a
computing system may occur simultaneously or almost simultaneously. In addition to events that
are intentionally synchronized such as running checks on multiple nodes of the system, there is
also a known tendency for independent events to become synchronized [43]. But if the events that
cause delays in program execution are not independent, the overall influence on performance will
likely differ and models that do not take into account possible noise synchronization may produce
incorrect results. For example, the NWPerf monitoring system [44] synchronizes the moments
when agents trigger actions on computational nodes, which, according to the authors, reduces the
influence of these actions on the workload. But it is still not entirely clear how the influence of noise
synchronization can be quantified.

One way of studying the impact of noise is injecting artificial noise [45]. To the best of our
knowledge, however, present noise injections systems do not yet support synchronized artificial
noise.

2.4.  Understanding the sensitivity of algorithms to noise.

Because algorithms are the center piece of computer programs, primarily responsible for their
resource consumption, catalogs have emerged in which researchers document the structure and
characteristics of computational algorithms and their implementations for various computing
platforms, including Templates for the Solution of Linear Systems! [39], ALGLIB?, and A Library

of Parallel Algorithms®. A distinctive feature of AlgoWiki# is the use of a single structure for the
description of any algorithms, a concept of “problem-method-algorithm-implementation” chains [46],
and special emphasis on the properties associated with parallelism.

The dynamic properties of algorithm implementations, in particular those related to scalability,
are an important part of many scientific studies. Since noise is known to disturb load balance, it
also presents a serious impediment to scalability [39]. There are a number of metrics for measuring
scalability of algorithms, such as iso-efficiency [47|. Except for rare studies with a narrower focus
such as tasking on shared-memory systems [48], these metrics characterize algorithms on a rather
theoretical level and largely ignore the dynamic characteristics of their implementation on specific
computing systems. And no universally accepted metric has yet been proposed that allows the
scalability of algorithms implementations to be compared based on their dynamic characteristics.
AlgoWiki advocates a multidimensional scalability metric [49], which was partially used to compare
implementations of the algorithms described in AlgoWiki w.r.t. scalability. However, further studies
revealed several disadvantages of this metric, mainly its significant dependence on the choice of the
range of parameter values. Some modifications of this metric were proposed [50]|, which, however,
did not solve all problems.

Most important for this project, all well-known algorithm catalogs describe the properties
of numerical algorithms and their implementations without taking their response to noise into
account, which can change their dynamic properties quite significantly. Considering the influence
of environmental noise on program execution can draw a more realistic picture and open add a new
dimension to the filed of algorithm engineering.

! http://www.netlib.org/linalg/html\_templates/Templates.html
2 https://www.alglib.net/

3 https://www.cs.cmu.edu/"scandal/nesl/algorithms.html

4 https://algowiki-project.org/en/
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3. THE EXTRANOISE PROJECT

The recently started ExtraNoise joint project addresses the questions mentioned above. It is
funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the Russian
Foundation for Basic Research (RFBR). In addition to making performance analysis more noise
resilient, the partners also aim at a better understanding of how applications respond to noise in
general and which design choices increase or lower their active and passive interference potential.
The key contributors of the project are TU Darmstadt, Juelich Supercomputing Centre, and Moscow
State University. ETH Zurich also provides valuable expertise.

The overarching goal of the ExtraNoise project is making application performance analysis on
systems with high performance variation both cheaper and more reliable—noise resilient in one word.
The project targets a range of typical performance analysis techniques, including raw performance
measurement, trace analysis, and empirical performance modeling. Expecting that our approach to
noise resilience is to some degree system and application specific, we also want to better understand
both noise patterns applications are exposed to on a given system and the assess the noise sensitivity
of applications. From knowledge of noise sensitivity we want not only to derive strategies of how to
conduct performance analysis most effectively but also give feedback for application developers on
how to lower the impact of noise without compromising algorithmic performance.
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Figure 1. Performance analysis of HPC applications in noisy environments. The flag symbols on the
work-package boxes indicate the country of the lead team.

Figure 1 illustrates our project concept. The grey boxes represent the five specific contributions
we make:

Noise-resilient performance measurement & analysis of applications. Capture essential
traits of the performance behavior in a noise-resilient way and, based on these traits, identify
and quantify classic performance bottlenecks such as load imbalance (WP1).

Noise-resilient performance modeling of applications. Use noise-resilient performance mea-
surements as prior to help empirical performance modeling ignore noise effects and investigate
to which extent asymptotic scaling behavior can be derived without reliance on noise-affected
performance metrics altogether (WP2).

System noise characterization. Measure and characterize the noise patterns an application is
exposed to at runtime with a focus on I/O and interconnect noise sources (WP3).
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Noise-sensitivity analysis of applications. Finds ways to determine how noise-sensitive an
application is and why and use this knowledge for further performance analysis and
optimization (WP4).

Noise-sensitivity characterization of algorithms. Distill the lessons learned about the noise
sensitivity of applications into general insights into the noise sensitivity of algorithms and
their implementation alternatives (WP5).

In the concept figure, black arrows represent input-output relationships. Light arrows indicate
synergy potential in terms of common base concepts. As you can notice, each of the contribution
is a focus of a dedicated work package.

To reach our goals, we build upon and extend established tools developed by partner organi-
zations, namely JobDigest, Score-P, Scalasca, and Extra-P, which are described under preliminary
work. The resulting methods will be evaluated with a combination of synthetic data, benchmarks,
and modern production codes from both countries.

Below, let us define work packages that explain how we address the different research questions,
not saying about coordination and dissemination.

4. REVEALING THE NOISE INFLUENCE ON APPLICATIONS WITH SYSTEM
MONITORING

4.1. Measuring and Characterizing the Noise

The objective of this work package is to devise techniques for characterizing noise in HPC system.
We focus on noise that originates from several nodes simultaneously, network activity or I/O. Special
attention will be paid to noise that is synchronized across multiple nodes of a cluster.

As a first task, we will develop methods for detecting such noise. We will design suitable probes
that can capture a variety of noise patterns. Probes will exploit synchronizing operations such as
MPI collectives to expose noise-induced delays. The probes will be validated with artificial noise
injected into the system, for example, using Gremlins [45]. Beyond existing noise-injection methods,
we will also create a testbed with synchronized artificial noise.

The second task is to study how the noise level changes over time. The noise may change not
only because of interference from other jobs, but also as a result of housekeeping procedures. We
start with considering these latter changes.

The third task is to develop environmental metrics which can show the system noise level without
the need to run dedicated tests. This will then also expose the noise originating from other jobs
interfering with the one of interest. These metrics will be integrated into the reports issued by
our monitoring system JobDigest. Thus, we will make it possible to evaluate the noise level on
the system (counters representing various noise sources like interconnect, I1/O, etc.) during an
application run and help estimate the resulting performance degradation without instrumenting the
code and making restricting assumption about the application structure like in our earlier work [51].

This work package is based on system monitoring data and data collected during test runs.
The output can be used to develop methods to analyze the noise sensitivity of applications and to
estimate the impact of noise on their runtime.

4.2.  Noise-Sensitivity Analysis of Applications

The objective of this work package is to develop methods for detecting and understanding noise-
related application behavior — both as a target and a producer of noise — based on the analysis
of system monitoring data. The central idea is to learn how the change of environment metrics
over time indicates noise-induced changes of the application behavior. To this end, we plan to solve
three tasks.

As the first task and main theme, we will correlate the evolution of environment metrics over
time with changes in application performance. JobDigest will collect the necessary environment
metrics using its underlying system-monitoring infrastructure, based on the results of the work
package described in subsection 4.1. This will allow us to identify the most sensitive and the most
disturbing applications on a given system and also quantify their active and passive interference
potential.

LOBACHEVSKII JOURNAL OF MATHEMATICS



8 D. A. NIKITENKO, K. S. STEFANOV, VAD. V. VOEVODIN

The goal of the second task is to transfer the insights we gain from the analysis of specific
applications in the first task to previously unseen applications. Specifically, we will employ machine
learning to identify applications with similar noise-response behavior or similar active interference
histories. This is supposed to broaden and accelerate the identification of applications with high
degrees of noise sensitivity and/or potential to disturb others. We want to exploit such similarities
(i) to determine how to modify applications to reduce both their active and passive interference
potential and also (ii) to predict the noise-related behavior of applications at least to some degree,
for example, as a hint to the scheduler as to which jobs should be run together and which not.

Based on the results of the previous two tasks, we plan to eventually integrate functionality into
JobDigest to support application noise-sensitivity analysis. The integrated solution will be made
available to supercomputer users, allowing us to collect their feedback on how to further tune and
upgrade JobDigest.

This work package will use mechanisms developed and data produced in the work package
described in subsection 4.1, including environment metrics and methods for measuring noise. At
the same time, it will contribute to the work package described in subsection 4.3, providing means
to assess the noise-sensitivity of algorithm implementations.

4.3. Noise-Sensitivity Characterization of Algorithms

The objective of this part is to characterize the noise sensitivity of algorithms and their
implementations based on observations and theoretical estimations. The results will be added to the
AlgoWiki Open Encyclopedia of Parallel Algorithmic Features in the form of extended algorithm
descriptions to support scalable algorithm engineering and software development.

To characterize noise-related bottlenecks of canonical algorithm implementations, we are going
to develop new schemata to describe such dynamic properties in a uniform way, on the basis of
observations. Particular emphasis should be placed on how scaling properties respond to noise. We
will evaluate how noise-resilient performance models can support such descriptions.

After that, we are going to study and describe the noise-related properties of implementations of
various algorithms from the AlgoWiki encyclopedia. As our methods and tools for identifying and
assessing the effect of noise on software mature, we plan to further expand the descriptions of noise
sensitivity. Algorithm implementations with varying degrees of resistance to external noise will be
highlighted. We will ponder the question whether resistance to external noise is a characteristic of
only specific implementations or whether it can be attributed to more general algorithmic features,
to methods for solving problem classes, or even to the problems themselves.

The proposed work will rely on the experimental noise-sensitivity analysis of various algorithm
implementations. While noise-resilient performance models may contribute to more comprehensive
descriptions of algorithm implementations, insights into the noise resistance of algorithm imple-
mentations may support the performance-modeling tool chain in selecting a balanced prior that
is neither too rigid nor too flexible. Moreover, such insights can point application performance
analysts to implementation details that would be missed otherwise.

5. CONCLUSIONS

The ExtraNoise project, recently supported by DFG and RFBR, aims vital questions of
performance evaluation in real-life noisy environments. The international team has got a successful
experience in collaborating with each other, and possesses a rich project-related background and
expertise. The three years of project promise to provide valuable output. At present, at a kickoff
point, we encourage the reader to share interesting use cases of noise influence and to collaborate.

Acknowledgments. The research is carried out using the equipment of the shared research facili-
ties of HPC computing resources at Lomonosov Moscow State University [52]. The reported study
was funded by RFBR, project number 21-51-150001, and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - 449683531.
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