000894425 001__ 894425
000894425 005__ 20220126162539.0
000894425 0247_ $$2doi$$a10.1016/j.rhisph.2021.100352
000894425 0247_ $$2Handle$$a2128/29884
000894425 0247_ $$2WOS$$aWOS:000663433400001
000894425 037__ $$aFZJ-2021-03217
000894425 041__ $$aEnglish
000894425 082__ $$a580
000894425 1001_ $$0P:(DE-Juel1)161296$$aKuppe, Christian W.$$b0$$eCorresponding author
000894425 245__ $$aComparison of numerical methods for radial solute transport to simulate uptake by plant roots
000894425 260__ $$aAmsterdam$$bElsevier$$c2021
000894425 3367_ $$2DRIVER$$aarticle
000894425 3367_ $$2DataCite$$aOutput Types/Journal article
000894425 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641385055_10771
000894425 3367_ $$2BibTeX$$aARTICLE
000894425 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894425 3367_ $$00$$2EndNote$$aJournal Article
000894425 520__ $$aThe 1D radial solute transport model with non-linear inner boundary condition is widely used for simulating nutrient uptake by plant roots. When included into an architectural root model, this local model has to be solved for a high number of root segments, e. g. – segments for large root systems. Each root segment comes with its own local parameter set in heterogeneous root architectural models. Depending on the soil and solute, the effective diffusion coefficient spans over more than six orders (e. g. for N, K, and P). Thus a numerical implementation of this rhizosphere transport model is required to be fast, accurate and stable for a large parameter space. We apply 13 methods to this rhizosphere model with root hairs and compare their accuracy, computational speed, and applicability. In particular, the Crank-Nicolson method is compared to higher-order explicit adaptive methods and some stiff solvers. The Crank-Nicolson method sometimes oscillated and was up to a hundred times slower than an explicit adaptive scheme with similar accuracy. For a given spatial resolution, Crank-Nicolson had about one order lower accuracy as other tested methods. The maximum spatial time step can be estimated from root radius, solute diffusion, advection, and soil buffer power. Although Crank-Nicolson is a viable method and often used as de-facto standard method for rhizosphere models, it was not the best performer in our comparison. While the best method remains problem specific, for general use in root architectural models we recommend adaptive Runge-Kutta with cubic or quadratic upwind for advection.
000894425 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000894425 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894425 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b1
000894425 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes A.$$b2
000894425 773__ $$0PERI:(DE-600)2866641-0$$a10.1016/j.rhisph.2021.100352$$gVol. 18, p. 100352 -$$p100352$$tRhizosphere$$v18$$x2452-2198$$y2021
000894425 8564_ $$uhttps://juser.fz-juelich.de/record/894425/files/pre-print.pdf$$yPublished on 2021-03-27. Available in OpenAccess from 2022-03-27.
000894425 8564_ $$uhttps://juser.fz-juelich.de/record/894425/files/Kuppe%20et%20al.%20-%202021%20-%20postprint.pdf
000894425 909CO $$ooai:juser.fz-juelich.de:894425$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161296$$aForschungszentrum Jülich$$b0$$kFZJ
000894425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b1$$kFZJ
000894425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b2$$kFZJ
000894425 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000894425 9141_ $$y2021
000894425 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25
000894425 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-25
000894425 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-25
000894425 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-25
000894425 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000894425 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894425 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-25
000894425 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000894425 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-25
000894425 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000894425 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-25
000894425 920__ $$lyes
000894425 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000894425 980__ $$ajournal
000894425 980__ $$aVDB
000894425 980__ $$aUNRESTRICTED
000894425 980__ $$aI:(DE-Juel1)IBG-2-20101118
000894425 9801_ $$aFullTexts