001     894425
005     20220126162539.0
024 7 _ |a 10.1016/j.rhisph.2021.100352
|2 doi
024 7 _ |a 2128/29884
|2 Handle
024 7 _ |a WOS:000663433400001
|2 WOS
037 _ _ |a FZJ-2021-03217
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Kuppe, Christian W.
|0 P:(DE-Juel1)161296
|b 0
|e Corresponding author
245 _ _ |a Comparison of numerical methods for radial solute transport to simulate uptake by plant roots
260 _ _ |a Amsterdam
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641385055_10771
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The 1D radial solute transport model with non-linear inner boundary condition is widely used for simulating nutrient uptake by plant roots. When included into an architectural root model, this local model has to be solved for a high number of root segments, e. g. – segments for large root systems. Each root segment comes with its own local parameter set in heterogeneous root architectural models. Depending on the soil and solute, the effective diffusion coefficient spans over more than six orders (e. g. for N, K, and P). Thus a numerical implementation of this rhizosphere transport model is required to be fast, accurate and stable for a large parameter space. We apply 13 methods to this rhizosphere model with root hairs and compare their accuracy, computational speed, and applicability. In particular, the Crank-Nicolson method is compared to higher-order explicit adaptive methods and some stiff solvers. The Crank-Nicolson method sometimes oscillated and was up to a hundred times slower than an explicit adaptive scheme with similar accuracy. For a given spatial resolution, Crank-Nicolson had about one order lower accuracy as other tested methods. The maximum spatial time step can be estimated from root radius, solute diffusion, advection, and soil buffer power. Although Crank-Nicolson is a viable method and often used as de-facto standard method for rhizosphere models, it was not the best performer in our comparison. While the best method remains problem specific, for general use in root architectural models we recommend adaptive Runge-Kutta with cubic or quadratic upwind for advection.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 1
700 1 _ |a Postma, Johannes A.
|0 P:(DE-Juel1)144879
|b 2
773 _ _ |a 10.1016/j.rhisph.2021.100352
|g Vol. 18, p. 100352 -
|0 PERI:(DE-600)2866641-0
|p 100352
|t Rhizosphere
|v 18
|y 2021
|x 2452-2198
856 4 _ |u https://juser.fz-juelich.de/record/894425/files/pre-print.pdf
|y Published on 2021-03-27. Available in OpenAccess from 2022-03-27.
856 4 _ |u https://juser.fz-juelich.de/record/894425/files/Kuppe%20et%20al.%20-%202021%20-%20postprint.pdf
909 C O |o oai:juser.fz-juelich.de:894425
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144879
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-25
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21