
Numerical methods for radial solute transport to
simulate uptake by plant roots

Abstract

The 1D radial solute transport model with non-linear inner boundary condition
is widely used for simulating nutrient uptake by plant roots. When included
into an architectural root model, this local model has to be solved for a high
number of root segments, e. g. 105 – 106 segments for large root systems. Each
root segment comes with its own local parameter set in heterogeneous root
architectural models. Depending on the soil and solute, the effective diffusion
coefficient spans over more than six orders (e. g. for N, K, and P). Thus a
numerical implementation of this rhizosphere transport model is required to be
fast, accurate and stable for a large parameter space.
We apply 13 methods to this rhizosphere model with root hairs and compare
their accuracy, computational speed, and applicability. In particular, the Crank-
Nicolson method is compared to higher-order explicit adaptive methods and
some stiff solvers.
The Crank-Nicolson method sometimes oscillated and was up to a hundred
times slower than an explicit adaptive scheme with similar accuracy. For a given
spatial resolution, Crank-Nicolson had about one order lower accuracy as other
tested methods. The maximum spatial time step can be estimated from root
radius, solute diffusion, advection, and soil buffer power.
Although Crank-Nicolson is a viable method and often used as de-facto standard
method for rhizosphere models, it was not the best performer in our comparison.
While the best method remains problem specific, for general use in root archi-
tectural models we recommend adaptive Runge-Kutta with cubic or quadratic
upwind for advection.

Keywords: Rhizosphere model, Barber-Cushman, Nye-Tinker, nutrient
depletion, Runge-Kutta, Crank-Nicolson

1. Introduction1

The radial rhizosphere model [1] has been widely used for simulating trans-2

port of various nutrients and their uptake by plant roots of many species. It was3

for example applied to phosphorus uptake by maize [2], zinc uptake by rice crop4

[3], magnesium, phosphorus, and potassium uptake by loblolly pine seedlings [4]5
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and N, P, K, Ca, Mg uptake by black cherry, northern red oak, and red maple6

[5]. Solving an individual instance of such a model typically takes a fraction of7

a second on modern CPUs. Advanced investigations in root biology require to8

take the soil heterogeneity, root system architecture and the variation in root9

parameters along that architecture into account. This can typically be done10

by replacing the simple root growth model with a 3D root architectural model,11

which discretizes the root system into millions of root segments, each with its12

own parameter set and instance of the radial rhizosphere model. This approach13

is for example implemented in Mai et al. [6] and in the functional structural plant14

model OpenSimRoot [7], which was used in several studies on the utility of root15

architectural and anatomical traits for uptake of phosphorus [8, 9, 10]. Thus, for16

simulations with 3D functional structural plant models such as OpenSimRoot,17

computational speed of the numerical implementation can become critical.18

The rhizosphere model for a root segment consists of a 1D radial advection-19

diffusion equation with a Michaelis-Menten uptake kinetic at the inner boundary20

(rhizoplane) and zero flux outer boundary condition [1]. Itoh and Barber [11]21

added a reaction term describing uptake by root hairs. Though analytical solu-22

tions have been identified for various special cases of transport in the rhizosphere23

[12, 13, 14, 15, 16, 17, 18, 19], there is no analytical closed-form solution in24

the general case. Thus, in addition to computational speed, decisions on which25

method to use for an efficient numerical implementation should also be made on26

stability and accuracy. A certain minimum accuracy is desired over a range of27

model parameter values which typically is rather wide. For example, Bouldin28

[20] considered diffusion rates from 1 × 10−5 to 1 × 10−9 cm2 s−1 for phosphorus,29

however, without soil sorption, and root radii from 5×10−5 to 7.5×10−4 cm in a30

pure diffusion model without root competition. Relevant model parameters that31

determine nutrient depletion are soil parameters like solute diffusion, advection,32
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soil buffer power, along with root morphology, and uptake. Uptake by roots is33

governed by root radius, r0, and Michaelis-Menten parameters describing the34

relation between concentration and nutrient uptake. Together, these parameters35

determine the concentration profiles and thus the suitability of specific numerical36

methods. How the parameter values relate to required minimum step sizes is37

hinted at by characteristic dimensionless numbers such as the Péclet number [e. g.38

21], Courant number (CFL: Courant, Friedrichs, and Lewy [22]) and Fourier39

number [e. g. 23].40

Plants not only absorb but also exude solutes. The model can be adapted41

for this by changing the inner boundary condition and introducing a reaction42

term to represent degradation rates of the (organic) exudates. Such adaptations43

benefit from flexibility in the implementation. Thus besides speed, accuracy, and44

stability, another requirement on the numerical implementation of the model45

is that it can be easily extended. Passioura and Frere [24], Nye and Marriott46

[25], Newman and Watson [26], Nye [27], Barber and Cushman [1], Itoh and47

Barber [11] used the (implicit) Crank-Nicolson method [28] to solve macroscopic48

rhizosphere nutrient transport and this method is still popular to solve such49

parabolic equations in rhizosphere models [e. g. 29]. Other commonly used50

methods are explicit forward simulations like a forward Euler method (FTCS:51

forward time central space) [e. g. 30, 31], which needs, in general, a much smaller52

time step size than the implicit Crank-Nicolson method (CN) to be stable and53

achieve comparable accuracy (for non-smooth solutions). Ou [19], Roose and54

Kirk [18] even used first-order (upwind) discretization for the first derivative55

in space and time, second-order only for the second derivative, and used the56

numerical results as a reference for the analytical approximations. Explicit57

methods might need smaller time steps but are straight forward to implement58

and easy to understand, which are helpful attributes when extending the model.59
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Numerical methods are a much overlooked topic in rhizosphere modeling in60

general. To our knowledge, so far no comprehensive testing of numerical methods61

for a classical rhizosphere model has been presented. Here, we investigated several62

explicit and implicit methods varying in their numerical order in space and time,63

applied to the classical rhizosphere model with root hairs by Itoh and Barber64

[11], concerning the mentioned criteria speed, accuracy, and applicability. We65

compared Crank-Nicolson to various explicit Runge-Kutta methods and implicit66

methods, BDF (Backward Differentiation Formulas) and IRK (implicit Runge-67

Kutta), with adaptive time steps. The aim was to identify methods that are68

most suitable for linking to a root architectural model, by fulfilling the criteria69

for a wide range of parameters, especially a high variation in the proportion of70

advection and effective diffusion. Numerical experiments with various parameters71

were performed to estimate the numerical error and computational time and72

thus to evaluate the different methods.73

2. Methods74

We describe the model by Itoh and Barber [11], different solution methods75

and their numerical discretizations. The various numerical methods compared76

in this study are listed in Table 1. This section also contains an explanation of77

the evaluation criteria used to compare the various methods.78

2.1. Solute uptake model79

Roots take up water and thereby create hydraulic gradients in the soil around80

them. The resulting flow of water transports solutes (nutrients) towards the81

roots. Unlike water, these solutes can not pass the cell membranes passively and82

apoplastic transport is blocked by the Casparian band. The solute concentration83

would simply increase at the root surface, however, plants have mechanisms to84

actively pump solutes into the root, typically at rates greater than the advective85
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Table 1: Discretization methods, abbreviations and their theoretical orders
Methods: Non-stiff solver Order (total) Adv.

Implicit (non-adaptive)
Crank-Nicolson method CN O(∆r2, ∆t2) O(∆r2)
Implicit Euler method, backward time central space BTCS O(∆r2, ∆t) O(∆r2)

Embedded explicit Runge-Kutta
Cash-Karp, cubic upwindc adv., central diffusion RKCK-CUI O(∆r2, ∆t5) O(∆r3)
Cash-Karp, central space RKCK-CS O(∆r2, ∆t5) O(∆r2)
Cash-Karp, quadratic upwindb adv., central diffusion RKCK-QUICK O(∆r2, ∆t5) O(∆r2)
Bogacki-Shampine, cubic upwindc adv., central diffusion RK3(2)-CUI O(∆r2, ∆t3) O(∆r3)
Bogacki-Shampine, central space RK3(2)-CS O(∆r2, ∆t3) O(∆r2)
Bogacki-Shampine, Koren flux limiter, 2nd-order upwindd adv. RK3(2)-koren O(∆r2, ∆t3) O(∆r2)

Methods: Stiff solver
Embedded implicit Runge-Kutta

Lobatto IIIA 2 (TRa), cubic upwindc adv., central diffusion IRK2-CUI O(∆r2, ∆t2) O(∆r3)
Lobatto IIIA 2 (TRa), central space IRK2-CS O(∆r2, ∆t2) O(∆r2)
Lobatto IIIC 4, central space LobattoIIIC-CS O(∆r2, ∆t4) O(∆r2)

Implicit multi-step methods (adaptive)
BDF 2-step, TRa start, cubic upwindc adv., central diffusion BDF2-CUI O(∆r2, ∆t2) O(∆r3)
BDF 2-step, TRa start, central space BDF2-CS O(∆r2, ∆t2) O(∆r2)

a)trapezoidal rule, b)QUICK (κ = 1/2), c)CUI (κ = 1/3), d)2nd-order (κ = −1)

water flux. This effectively lowers the concentration at the root surface and86

causes diffusion of solutes towards the roots in addition to the advective flow.87

Thus, modeling nutrient uptake into a root system can be based on a partial88

differential equation (PDE) which includes advection (driven by water flux) and89

diffusion.90

The transport model with root hairs [11] describes the change in solute concen-91

tration of the liquid phase, C [µmol cm−3], in the rhizosphere around a segment92

of a root in radial coordinates:93

b ∂C
∂t

= 1
r

∂

∂r

(
rDb∂C

∂r
+ r0v0C

)
− Ih. (1)

Here, r0 is the root radius and v0 denotes the water flux at the root surface. Eq. (1)94

has to be solved between the root surface r0 and an outer rhizosphere radius95

rN , see the definition of boundary conditions below. Assuming radial symmetry96

around the root segment, solute concentration depends on one spatial coordinate97

r and time t, i.e. C := C(r, t). We will omit space and time dependence in some98
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notations for simplicity. The term Ih := Ih(r, t) [µmol cm−3 s−1] accounts for99

root hair uptake by diffusion, modeled as instantaneous reaction for the root100

hairs at time t, see below. Note that Itoh and Barber [11] contains a typo causing101

the root hair term to be inside the differential operator. Soil buffer power, b,102

and effective diffusion coefficient, D [cm2 s−1], are adjusted to soil sorption by103

Db = Dℓθτ , where Dℓ is the diffusion rate in pure liquid, θ the volumetric water104

content and τ a tortuosity factor. These parameters are commonly assumed105

constant in rhizosphere modeling, at least locally. Spatial variations of b, D, and106

θ can be accounted for in root architectural models by assigning different values107

to different root segments. Temporal variations can be dealt with in a similar108

way, if the changes are slow compared to the time steps used for numerical109

integration. Here we stick to the common model assumption of locally constant110

D and b. In this case eq. (1) can be written as111

∂C

∂t
= a(r)∂C

∂r
+D

∂2C

∂r2 − Ih

b (2)

with a coefficient112

a(r) := 1
r

(
D + v0r0

b

)
. (3)

Following Itoh and Barber [11], the solute uptake by root hairs is defined as113

Ih(r, t) = Imaxh
(Crh(r, t) − Cmin)

Kmh
+ Crh(r, t) − Cmin

Ah(r), (4)

with a maximum uptake flux for root hairs Imaxh
, a Michaelis-Menten constant for114

root hairs Kmh
, a lower limit for solute concentration Cmin, and the concentration115

at the root hair surface Crh. The surface area of root hairs, Ah [cm2 cm−3], over116
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an interval δ along root hair length, per unit volume, is given by117

Ah :=


2πrhNhL

∫
δ

dr

2πL
∫

δ
rdr

= 2rhNhδ
(r+δ)2−r2 for lh+r0 > r

0 for lh+r0 ≤ r

(5)

The surface area per unit volume of root hairs used in eq. (4), Ah(r), is obtained118

infinitesimally from eq. (5) by119

Ah(r) :=


lim
δ→0

2rhNhδ
(r+δ)2−r2 = Nhrh

r for lh+r0 > r

0 for lh+r0 ≤ r

(6)

Here, rh and lh [cm] are radius and length of the root hairs, respectively, and120

Nh [cm−1 root] denotes the number of root hairs in the calculation domain, i. e.121

on the root surface area over a unit root length L. The discrete formulations are122

described in section 2.3.3.123

An approximation of the relation between the solute concentration at root hairs,124

Crh(r, t), and the average solute concentration in the rhizosphere, C(r, t), was125

established by Baldwin et al. [32]:126

C(r, t) ≈ Crh(r, t)
(

1 + αhrh

Db ln
(

rh1
exp(0.5)rh

))
, (7)

where αh is the root-hair absorbing power. This relation is valid if the root hair127

diameter is small compared to the mean distance between root hairs. The pairwise128

root hair half-distance is here calculated by rh1 =
√
rπL/(2NhL), assuming an129

equidistant root hair distribution. Substituting αhCrh by a Michaelis-Menten130

formula related to root-hairs [11], eq. (7) becomes131

C(r, t) ≈ Crh(r, t) + Imaxh
(Crh(r, t) − Cmin)

Kmh
+ Crh(r, t) − Cmin

rh

Db ln
(

rh1
exp(0.5)rh

)
. (8)

7



Solving this equation for Crh(r, t) leads to an expression which can be inserted132

into eq. (4):133

Crh(r, t) ≈ X +
√

X2 + C(r, t) · (Kmh
− Cmin) + Y · Cmin , (9)

using the abbreviations Y:=Imaxh

(
rh

Db ln
(

rh1
exp(0.5)rh

))
and X := (C(r, t) −Kmh

+ Cmin − Y)/2.134

2.2. Boundary Conditions135

Active uptake of solutes by the roots can be described by Michaelis-Menten136

kinetics in the boundary condition at the root surface r0:137

Db∂C(r0, t)
∂r

+ v0C(r0, t) = Imax(C(r0, t) − Cmin)
Km + C(r0, t) − Cmin

, (10)

with a maximum uptake flux Imax, the lower limit for solute concentration Cmin138

already used in eq. (4), and a Michaelis-Menten constant Km. This Robin139

boundary condition defines solute flow out of the domain at the r0-boundary.140

The Michaelis-Menten kinetics introduces non-linearity into the otherwise linear141

PDE. Itoh and Barber [11] added a root hair term Ih(r0, t) to the right-hand-side142

of eq. (10) which we did not follow because it would give root hairs a too high143

weight on the total sink at r0.144

Roots compete with neighboring roots for nutrient resources. An average root145

competition over the whole root system can be taken into account by defining the146

outer boundary rN as half of the averaged distance between roots and setting a147

zero-flux outer boundary condition. In this case, the length of rN determines the148

amount of competition between roots. This zero-flux outer boundary condition149

reads150

Db∂C(rN , t)
∂r

+ r0v0
rN

C(rN , t) = 0. (11)
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The initial condition at t = 0 was set to a start value C(r, 0) = Cinit,r for all151

values of r.152

2.3. Spatial Discretization153

The spatial domain was discretized into N compartments, each with width154

∆r, such that ri = r0 + i∆r for i = 0, . . . , N . The diffusive term in eq. (2) was155

always discretized with a central finite difference, leading to second-order. For156

the inner spatial mesh points (i = 1, . . . , N − 1) this leads to157

∂Ci

∂t
= a(r)C

(i)
∆r

∆r +D
Ci−1 − 2Ci + Ci+1

∆r2 − Ih,i

b + e (12)

where Ci := C(ri, t), Ih,i := Ih(ri, t), and C
(i)
∆r abbreviates a stencil of the first158

discrete derivative on the ∆r-grid at node i, see below. The rest, e, contains159

errors of the assumptions of the analytical root hair solution and discretization160

in Ih and the truncation error, with the Landau-symbol O(∆r2), from central161

differences.162

For the boundaries at r0 and rN , special care has to be taken so that the163

accuracy is equal with the inner points. Otherwise, the global discretization164

order would be lower than stated in Table 1. Oosterlee et al. [33] pointed out165

that advection discretization should be O(∆r2) accurate (at least for smooth166

parts) and monotone which can be realized by flux limiters. Next, we describe167

different methods used to discretize the first derivative in eq. (12).168

2.3.1. Van Leer’s scheme for the first spatial derivative169

Van Leer’s κ-scheme [34] for the first spatial derivative is [33]170

C
(i)
∆r :=L−1 + L−α + L−β + L−γ (13)171
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with172

L−1 := − Ci + Ci+1173

L−α := − κ

2 (−Ci + Ci+1)174

L−β :=κ+ 1
4 (−Ci−1 + Ci)175

L−γ :=κ− 1
4 (−Ci+1 + Ci+2)176

for −a(r) < 0, flow to the root (“downstream”), which is the usual case for177

rhizosphere models.178

The order of above’s scheme is at least O(∆r2) for −1 ≤ κ ≤ 1 [35]. κ =179

1 corresponds to central differences, κ = 1/3 is called CUI (cubic upwind180

interpolation), κ = 1/2 QUICK (quadratic upwind interpolation for advective181

kinematics), κ = 0 Fromm’s scheme, and κ = −1 is the second-order upwind182

scheme [35]. We used mainly κ = 1/3, i. e.183

C
(i)
∆r = −1

3Ci−1 − 1
2Ci + Ci+1 − 1

6Ci+2,

for cases where we indicate the use of upwind discretization. And for the184

downstream discretization in RKCK-QUICK, the advection part is185

C
(i)
∆r = −3

8Ci−1 − 3
8Ci + 7

8Ci+1 − 1
8Ci+2.

2.3.2. Second-order upwind methods with flux limiter186

We also implemented the “Koren” flux limiter method which is of order two187

and constructed to avoid oscillations at steep gradients [36]. A hybrid approach188

is considered by controlling an added artificial dissipation with a limiter ψ for189
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each time point. In this case, eq. (13) becomes [33]190

C
(i)
∆r = L−1 + ψ(Ri)L−α + ψ(Ri−1)L−β + ψ(Ri+1)L−γ .

Smoothness is tested by191

Ri = Ci − Ci−1 + ϵ

Ci+1 − Ci + ϵ
.

with a constant ϵ to avoid division by zero, e. g., ϵ = 10−10 [36]. Koren [36] used192

a limiter ψ(Ri) = max (0,min (2Ri, (1 + 2Ri) /3, 2)). We used this flux limiter193

together with the second-order upwind discretization, κ = −1, because of the194

smaller stencil and therefore ease of implementation at the boundary.195

2.3.3. Discretization of uptake by root hairs196

Uptake by root hairs, Ih,i, depends on C(ri, t) via the concentration at root197

hairs Crh and on ri via the surface area of root hairs per unit volume Ah given198

by eq. (6). Several possible ways to spatially discretize Ah can be developed. It199

can be either associated to the left neighboring node, to the right neighboring200

node or, as we did, mid-value:201

Ahi =
2Nhrh · min(∆r,max(0, lh + r0 − ri + ∆r

2 ))
(ri + ∆r

2 )2 − (ri − ∆r
2 )2 (14)202

for i = 1, . . . , N − 1, and at the boundaries203

Ah0 =
2Nhrh · min( ∆r

2 , lh)
(r0 + ∆r

2 )2 − r2
0

, (15)204

AhN =
2Nhrh · min( ∆r

2 ,max(0, lh + r0 − rN + ∆r
2 ))

r2
N − (rN − ∆r

2 )2 . (16)205

The three mentioned discretization variants are quite similar in total root uptake206

over time and depletion of concentration, for example, in the first compartment.207

However, the discretization associated to the right neighboring node will over-208
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estimate total cumulative uptake and thereby is least favorable. We chose the209

mid-value association because its L1-error of the root uptake is lowest and it210

needs lower spatial resolution (N) to converge to a total uptake value resulting211

from higher-resolution simulations.212

The total uptake rate
.
U(t) [µmol s−1] over the discretized rhizosphere is the213

spatial sum of root hair uptake and root surface uptake,214

.
U(t) =

N∑
i=0

Ihi(t) Vi + 2πr0L Imax(C0(t) − Cmin)
Km + C0(t) − Cmin

, (17)215

where Vi [cm3] is the volume of the i-th compartment according to the discretiza-216

tion of eqs. (14)–(16), while Ih is a quantity per volume.217

2.4. Time Discretization218

Time was discretized into intervals ∆tj , such that tj+1 = tj + ∆tj for219

j = 0, . . . Nt, up to the simulation end time point tend. For transient differential220

equations, e. g. Lecheler [37] recommends a higher-order (i. e. order ≥ 2) scheme.221

2.4.1. Explicit and implicit Runge-Kutta222

As explicit methods, embedded Runge-Kutta schemes were used for time223

discretization. The approach is a line-method where the differential equation is224

first discretized in one direction, giving a set of ordinary differential equations225

(ODEs) with initial value in time. The resulting autonomous ODE, ∂C/∂t =226

f(C), can be solved with a Runge-Kutta one-step solver. For eq. (12), the227

iterative formula of an s-stage Runge-Kutta method over time is:228

Ci,j+1 = Ci,j + ∆tj
s∑

m=1
bmkm (18)229

km = f(Ci,j + ∆tj
s∑

l=1
aml kl) (19)230
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where Ci,j := C(ri, tj), and aml, bm are Runge-Kutta coefficients which can be231

found in Butcher-Tableaus. Here, a Runge-Kutta stage, km, is calculated over232

the spatial discretization and is not dependent on t explicitly.233

Runge-Kutta methods can be made adaptive in a scheme with (embedded)234

evaluations of two successive orders [38]. The lower order solution is taken to235

approximate a local error for the step size control algorithm. We used third-order236

Bogacki-Shampine method, fifth-order Cash-Karp [39], and also two embedded237

implicit Runge-Kutta methods (IRK): Lobatto-IIIC of order 4 and Lobatto IIIA238

of order 2, the trapezoidal rule (IRK2). For the implicit Runge-Kutta methods239

we need to solve an sN × sN -matrix system in each step which results from240

writing eq. (18) in implicit form: F(Cj+1) = 0. We solve this equation system241

for Ci,j+1 with Newton-Raphson iterations and for that allocate a Jacobian.242

For IRK2, the Jacobian has dimensions N × N and for Lobatto-IIIC (s = 3),243

3N × 3N , which is a 3 × 3 block matrix of (sparse) banded N ×N matrices. This244

block matrix Q has entries qml = 1δml − ∆t amlJl where δml is the Kronecker-245

Delta, 1 denotes the N × N identity matrix, and Jl = [∂f/∂kl]N×N are the246

derivatives. The resulting equation is Qk+1
j+1 dk+1

j+1 = −Fk+1
j+1 . We iteratively obtain247

solutions dk+1
j+1 = Ck+1

j+1 − Ck
j+1, where Cj = [C0,j , . . . , Cn,j ], and k denotes a248

Newton iteration step. The stopping criterion ∥Ck+1
j+1 − Ck

j+1∥ < aTol is usually249

reached in a few iterations.250

2.4.2. BDF251

From the group of multi-step methods and as further stiff method alternative252

to IRK for the time stepping, we implemented the adaptive BDF-2 methods253

after [38, 40]. We did not use the time step algorithm used by Celaya et al. [40],254

but used the algorithm described in Appendix A for sake of comparability with255

the other adaptive methods. For the Jacobians of the implicit schemes, we used256

sparse matrices, implemented as three arrays containing the diagonal, upper-,257
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and lower-diagonal.258

2.5. Crank-Nicolson and implicit Euler259

The CN (Θ = 0.5) and BTCS (Θ = 1) methods are approaches of simultaneous260

discretization of time and space:261

Ci,j+1 − Θγi (Ci+1,j+1 − Ci−1,j+1)262

− Θβ (Ci−1,j+1 − 2Ci,j+1 + Ci+1,j+1) − Θ∆t
b Ih(i,j+1)263

= Ci,j + (1 − Θ)γi (Ci+1,j − Ci−1,j)264

+ (1 − Θ)β (Ci−1,j − 2Ci,j + Ci+1,j) + (1 − Θ)∆t
b Ih(i,j) (20)265

where β := D∆t/∆r2 and γi := a(ri)∆t/(2∆r). The CN method is an implicit266

trapezoidal rule in time and a central finite difference scheme in space and hence267

can oscillate [41]. Both, CN and BTCS, are solved by Newton-Raphson scheme;268

the system matrix and Jacobian are described in Appendix B. CN is of order269

O(∆r2) + O(∆t2), while BTCS is first-order in time.270

2.6. Spatial and time step determination271

The relation between advection and diffusion with respect to ∆r is called272

(grid) Péclet number. For the i-th compartment it is Pei = a(ri) ∆r/D. The grid273

Péclet number is relevant for the appropriate grid size (number of grid points)274

of a numerical method. Because of r0 < r1 · · · < rN , Pei has its maximum in275

the first compartment:276

Pemax = Pe0 = ∆r
r0

∣∣∣1 + v0r0
Db

∣∣∣ = ∆r
r0

(1 + k) ,277

for v0 > 0, flow in root direction, and using a dimensionless ratio k := r0v0/(Db)278

of flux velocity, soil buffer power and effective diffusion. Thus, to maintain279
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Figure 1: Maximal ∆r to satisfy Pe ≤ 1, dependent on root radius r0 for a range of orders of
k/r0 = v0/(Db).

Pemax ≤ c, the limit estimate of ∆r is280

∆rmax = cr0
1 + k , (21)281

which is a function of soil and root parameters. Thus, the root trait, r0, sets a282

maximal limit to spatial grid resolution. Figure 1 shows how ∆rmax depends283

on r0 for different values of effective diffusion. Higher effective diffusion would284

accept coarser grids up to a limit, since ∆rmax → c r0 for k → 0. For stability, it285

is often suggested that the grid Péclet number should be less than or equal 2,286

but for accuracy reasons, we took a limit of 1 instead of 2.287

The CFL number, |a(r)|λ, is dependent on a mesh ratio, λ := ∆t/∆r, and288

describes the relation of time step size of the advective transport part and spatial289

grid size. In explicit time-stepping this should be CFL ≤ 1 to prevent the290

physical solution to skip grid-cells in case of advective transport.291

A solution propagation criterion for explicit methods with advection and disper-292

sion is CFL + 2 Fom ≤ 1 [e. g. 42, p. 301], where Fom denotes the mass Fourier293

number. Together with the propagation by the inner boundary condition we294

used295

∆t ≤ min
(

∆r·b·Km
Imax

,
∆r

(1 + k)D/r0 + 2D/∆r

)
, (22)
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Table 2: Parameter set, modified from Barber [43].
value SI unit

Water flux v0 1× 10−7 cm s−1

Minimum solute concentration for uptake Cmin 1× 10−4 µmol cm−3

Initial solute concentration in solution Cinit,r 13.6× 10−3 µmol cm−3

Maximum uptake rate Imax 3.21× 10−7 µmol cm−2 s−1

Michaelis-Menten half-saturation constant Km 5.45× 10−3 µmol cm−3

Root radius r0 0.05 cm
Depletion zone boundary rN 1.05 cm
Simulated time period tend 10 d
Root hair radius rh 5× 10−4 cm
Number of root hairs on the surface of a unit segment Nh 1000 cm−1

Average root hair length lh 0.2 cm
Soil buffer power b 39 −
Unit length L 1 cm

for all non-adaptive methods and as starting time step for adaptive methods.296

In the case of CN, the time step can, theoretically, be larger but oscillations297

occurred in some cases. The time step criterion in eq. (22) was used to ensure298

that CN was oscillation free. For all adaptive methods, we used the same step size299

control algorithm (Appendix A). This algorithm uses a relative error estimation300

in Lmax-norm of the local truncation error. The tolerance limit of this step size301

error estimation was set to Tol = 1 × 10−4 = 0.01 %. The absolute tolerance302

limit in L2-norm of a Newton-Raphson iteration step in implicit methods was303

set to aTol = 1 × 10−8. CPU-time was measured and related to a full (r, t)304

simulation run over an exemplary simulated time period of tend = 10 days305

(Table 2).306

2.7. Error estimation307

Each forward simulation was compared to its reference solution. The reference308

solutions were obtained with tolerances down to the relative machine accuracy309

and high spatial resolutions with negligible differences to even higher resolutions.310

To compare numerical results we used the relative L1 error norm (for non-311
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equidistant grids) as a measure, calculated as312

∥û− u∥
∥u∥

=

Nt∑
j=0

(
(|ûj − u(tj)| + |ûj+1 − u(tj+1)|) ∆tj

2

)
Nt∑

j=0

(
(|u(tj)| + |u(tj+1)|) ∆tj

2

) ,

which is geometrically equivalent to a comparison of normalized numerical313

integrals of order one. Here, Nt is the number of time steps, û denotes the314

numerical solution at hand, and u(tj) evaluates the reference solution with spline-315

interpolation to compare the numerical solution with a pseudo exact solution.316

Note that, due to the setup of initial values, û0 = u(t0) for all methods. In317

the following, we used this relative L1 error norm for the total nutrient uptake318

rate by a root segment,
.
U(t), which was calculated as uptake over root hair319

volume plus Michaelis-Menten uptake over the root surface, eq. 17. Total solute320

uptake rate,
.
U(t), was taken for the comparison of numerical methods because321

it amplifies errors in the first compartment, C(r0, t), by about one order, leading322

to a higher sensitivity to numerical errors than concentration.323

Mass conservation balances involve integration of mass over space and bound-324

ary fluxes over time, thus comparing two different numerical methods, each with325

their own numerical errors, and the balance calculation can be the least accurate326

one. For this reason we did not include a mass conservation balance into our327

comparison of methods.328

2.8. Numerical experiments329

Numerical experiments were performed over a range of depletion profiles330

(Figure 2). The different shapes resulted from varying the effective diffusion331

coefficient from D = 1 × 10−6 cm2 s−1 to D = 1 × 10−11 cm2 s−1. By varying332

the effective diffusion, a possible change in the soil buffer power was implied in333
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the diffusion coefficient. Barber [43] considered an effective diffusion coefficient334

of D = 1 × 10−12 cm2 s−1 as minimum for bioavailability. Thus the variation in335

D covered an exemplary nutrient range of nitrogen, potassium, phosphorus to336

almost non-bioavailable solutes. The Michaelis-Menten parameters, Imax and337

Km, for root and root hairs are set equal.338

The root metabolic trait Imax (maximum uptake rate) influences the rhizosphere339

depletion profile similar to the effective diffusion D, see Figure 3, where Imax340

was varied between 1 × 10−5 and 1 × 10−7 µmol cm−2 s−1, in combination with341

two exemplary effective diffusion coefficients D. The range of the resulting342

shapes (Figure 3) is qualitatively similar (or in some cases even the same) to that343

obtained by varying the effective diffusion coefficient D in Figure 2, with low344

Imax corresponding to high D. Therefore we refrained from further investigating345

different values of Imax and focused on varying the effective diffusion coefficient346

D, with fixed b. This choice is also supported by the fact that the model is over-347

parameterized with respect to the solute concentration: if the soil buffer power,348

b1, changes with a factor w such that b2 = wb1, we can have the same depletion349

profile of the solute concentration, with accordingly defined Imax2 = wImax1350

and v02 = wv01 (subscripts 1 and 2 denote unscaled and scaled parameters).351

Effective diffusion has to stay the same, D2 = D1, whereas the diffusion in liquid,352

Dℓ, changes accordingly, Dℓ2 = wDℓ1. Contrary to the solute concentration353

profile, the uptake rate
.
U(t) scales with factor w.354

We include advection, v0 > 0. However, this model, eq. (1), is suitable for355

relatively small advection by water flux in the range of 0 to 2 × 10−6 cm s−1 [25].356

In this range the concentration profiles are not very sensitive to v0 given the357

parameters of Table 2. The parameter v0 mainly affects the concentration at the358

outer boundary of the simulated rhizosphere domain, modeled as zero flux of359

solution concentration, Figure 4. Since our evaluation criteria (error of nutrient360
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uptake rate and CPU-time) are not sensitive to those concentrations we did not361

vary v0 in our sensitivity analysis.362

This work considers standard spatial grids for comparison of the methods as363

described above. The grid could be made non-equidistant. However, presetting364

one non-equidistant spatial grid would be unsuitable, because the location of the365

steepest gradient depends on parameters and time as illustrated by Figures 2–4.366

Instead of presetting, a variable ∆r could be calculated to fulfil certain tolerance367

criteria, see e. g. Eigenberger and Butt [44] for CN in Cartesian coordinates.368

This adds spatial grid optimization to the solution routine, which we do not369

study.370

For certain parameter sets our differential equations are stiff after the definition371

of Lambert [45]. These stiff problems are faster solved with stiff solvers, as372

other solvers need small time steps despite the smooth solution. Hence we also373

compared representative stiff solvers.374

3. Results375

We performed simulations with the parameter set of Table 2 and three376

exemplary values of the effective diffusion coefficient, D = 1 × 10−6, 5 × 10−9,377

and 1 × 10−11 cm2 s−1. For the highest value of effective diffusion considered,378

the solution is flat and smooth (Figure 2a). With diminishing D, the differential379

equation becomes advection dominated, and the gradients become steep near380

the root especially in the first compartments in time and space (t0, r0), see381

Figure 2b–f. The shape of the results is influenced by Ih, the root hair uptake:382

the concentration profile is more s-shaped than the concave profile in simulations383

without root hairs.384

The system is stiff [45] if effective diffusion is high compared to the uptake rate385

(D > Imax) and advection is relatively small, resulting in flat depletion profiles386
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(a) D = 1 × 10− 6 cm 2 s− 1 (b) D = 1 × 10− 7 cm 2 s− 1 (c) D = 1 × 10− 8 cm 2 s− 1

(d) D = 1 × 10− 9 cm 2 s− 1 (e) D = 1 × 10− 10 cm 2 s− 1 (f) D = 1 × 10− 11 cm 2 s− 1

Figure 2: Three-dimensional mesh plots of solute concentrations in the rhizosphere over time
and space for exemplary effective diffusion coefficients D varying over six orders. Other
parameter values were taken as in Table 2. Plots may represent nitrate (a) potassium (b, c)
phosphorus (d, e), and strongly bound phosphorus (f). The color varies by the quantity of the
concentrations (z-axis). The curves start at the root surface r = r0.

(a) I max = 1 × 10− 5 µmol cm − 2 s− 1

D = 1 × 10− 6 cm 2 s− 1
(b) I max = 1 × 10− 6 µmol cm − 2 s− 1

D = 1 × 10− 6 cm 2 s− 1
(c) I max = 1 × 10− 7 µmol cm − 2 s− 1

D = 1 × 10− 6 cm 2 s− 1

(d) I max = 1 × 10− 5 µmol cm − 2 s− 1

D = 1 × 10− 7 cm 2 s− 1
(e) I max = 1 × 10− 6 µmol cm − 2 s− 1

D = 1 × 10− 7 cm 2 s− 1
(f) I max = 1 × 10− 7 µmol cm − 2 s− 1

D = 1 × 10− 7 cm 2 s− 1

Figure 3: Three-dimensional mesh plots of solute concentrations in the rhizosphere over time
and space for exemplary root uptake rates, represented by different values of Imax, and example
effective diffusion coefficients D. Other parameters were taken as in Table 2.
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    (a)                v0 = 1 x 10-5 cm s-1                     (b)                v0 = 1 x 10-6 cm s-1                       (c)               v0 = 1 x 10-7 cm s-1
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Figure 4: Solute concentrations in the rhizosphere over space at time points 1, 5, and 10 d for
varying water flux v0: (a) 1 × 10−5 cm s−1, (b) 1 × 10−6 cm s−1, (c) 1 × 10−7 cm s−1, for the
example effective diffusion of D = 5 × 10−9 cm2 s−1 and values of Table 2.
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Figure 5: Oscillation amplitude ranges of CN for ∆t-∆r-combinations for the example of
D = 1 × 10−6 cm2 s−1.
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(Figures 2a, 3c and 3f). Also, stiffness of the system can lead to oscillations if387

the time step size is not changed appropriately with spatial resolution. Figure 5388

shows the amplitude of such oscillations for CN in the case of high effective389

diffusion. Thus, the chosen parameter set influences not only the shape of the390

solution but also the stability of the method.391

To compare the numerical methods of Table 1, the relative L1 error norm of392

total root uptake (Figure 6) and CPU-time (Figure 7) were monitored for the393

respective methods. Spatial resolution (given by N or ∆r) and associated394

temporal resolution ∆t were varied in a range appropriate to the respective395

scenario.396

In Figure 6, the Péclet number is included, which sets a limit to the spatial397

resolution, see Figure 1. The low effective diffusion scenario (Figure 6c) with398

its steep depletion zone (Figure 2f) needed a finer grid than the high effective399

diffusion scenario (Figure 6a) to achieve similar accuracy.400

There was no single method standing out from the others by high accuracy for all401

three scenarios (Table 3). There was a general tendency towards highest accuracy402

of explicit Runge-Kutta methods, yet IRK2-CUI showed best performance for403

the intermediate effective diffusion scenario (D = 5 × 10−9 cm2 s−1) and fine404

spatial resolution (Figure 6b). In the low effective diffusion scenario (Figure 6c)405

the flux limiter method, RK3(2)-koren, gave more accurate results especially at406

coarser resolutions.407

We desire methods that are both accurate and fast. For some methods im-408

provements in accuracy come with relatively high increases in CPU-time, where409

others scale more favorably (Figure 7). The ranking of the methods according to410

CPU-time not only differed by accuracy but also by parameter space, here the411

effective diffusion coefficient. For the high effective diffusion scenario (Figure 7a),412

which could resemble nitrogen and is a stiff problem, the implicit adaptive413
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Table 3: Best performing methods by scenario and criteria.
Scenario D speed vs. accuracy vs. nutrient

cm2 s−1 accuracya spatial resolutionb examplec

flat concentration profile 1× 10−6
IRK2-CUI,
RKCK-CUI,
RK3(2)-CUI

IRK2-koren,
RKCK-CUI,
RK3(2)-CUI

N

s-shaped concentration profile 5× 10−9 IRK2-CUI,
RKCK-QUICK

IRK2-CUI,
RKCK-QUICK K

steep depletion zone 1× 10−11 RKCK-CUI IRK2-koren,
RKCK-CUI P

a) Fig. 7, b) Fig. 6, c) soil sorption dependent. Abbreviations of methods according to Table 1.

trapezoidal integration (IRK2) and BDF were expected to be suitable, but the414

RK3(2)-CUI method showed a better performance. For the intermediate effective415

diffusion range (Figure 7b), which could resemble potassium, Runge-Kutta with416

upwind was in general fast while still accurate, having an error of under 0.1 %417

(third-order). Here, RKCK-QUICK was the fastest up to an accuracy where too418

many time steps were rejected. The non-linear CPU-time-increase of the explicit419

adaptive methods can be made linear by lowering the step size tolerance.420

In Figure 7c, the low effective diffusion scenario, again explicit adaptive solvers421

worked best, whereas upwind methods were more accurate than the central422

difference schemes. RKCK-CUI and RKCK-QUICK performed comparably well423

in all three effective diffusion scenarios. BTCS and CN were slow in all scenarios424

for a given accuracy, suggesting that the ’default’ choice for solving the 1D radial425

rhizosphere model might not be the most efficient one.426

The error decreases with increasing grid size, therefore the similarity of Fig-427

ures 7(d–f) to Figures 7(a–c). However, grid size can be important if memory428

consumption has to be optimized. Figures 7(d–f) show a steady pattern of the429

methods. The lines of the fixed-step methods, CN and BTCS, in Figures 7(d–f)430

did not change, because CPU to memory workload is the same for each scenario;431

the adaptive methods differ due to the number of time step rejections in a432

simulation.433
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Figure 6: Minimal relative error of total root uptake for the 13 discretization methods of Table 1,
related to spatial resolution and maximal grid Péclet number for three effective diffusion values (a)
D = 1× 10−6, (b) D = 5× 10−9, (c) D = 1× 10−11 cm2 s−1. All parameters except D were taken
from Table 2. Abbreviations of methods according to Table 1.
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Figure 7: CPU-time compared to relative error and grid size (number of grid points) of different
discretization methods. (a–c) Minimal relative error of total root uptake over time and runtime
for spatial steps. (d–f) Spatial and temporal resolution compared to CPU-time. Grid size is
defined by N × Nt. All parameters except D were taken from Table 2. CN and BTCS are on
top of each-other in (a), (d) and (f). A relative tolerance of 1 × 10−4 was used. Abbreviations
of methods according to Table 1.

25



4. Discussion434

We compared 13 numerical methods (Table 1) on the Itoh and Barber435

[11] model over a wide range of parameters. The methods cover a range of436

discretization types and orders, including explicit, implicit and stiff methods437

with and without upwind. The adaptive explicit methods included a flux limiter438

method and Runge-Kutta methods of different orders. We considered equidistant439

spatial discretization and higher-order κ-schemes, where steep gradients are still440

smoothed, but accuracy can be higher compared to first-order upwind.441

In the simulations we considered flow into the root only. Upwind schemes have a442

direction in the discretization, so that water flux out of the root can be handled443

using a compact form which takes care of changing flow directions. This is444

of interest in a scenario where the sign of the v0-term changes. In functional445

structural models, water uptake is no longer assumed to be constant and could446

change direction when, for example, hydraulic lift occurs at night.447

Explicit methods are arguably easy to implement as they do not require to solve448

an equation system whose solving is the reason why the CN and BTCS method449

are slow. Thus explicit methods have the potential to be “fast”, but will also450

use fine grids for sufficient accuracy. Consistent with Trottenberg et al. [35],451

the implicit central schemes are not as stable as the upwind schemes but can452

be faster in diffusion dominant cases. Upwind for advection is reasonable if the453

advection is dominant (Péclet number high) since discretization follows the flow454

direction. Central difference for diffusion leads to a conditionally stable scheme455

while for advection it is unconditionally unstable, hence we see in our simulations456

that added diffusion alleviates this effect. We used them for advection dominated457

scenarios (Table 1) for the sake of comparison. Adaptive methods can handle458

a large range of parameters and stabilize themselves in time by adapting the459

time step size. However, they are constrained by the local tolerance of the step460
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size control. CN, with its central differences, was implemented as in Barber461

and Cushman [1], Itoh and Barber [11]. It can be used on a wide range of462

parameters too, but needs in some limiting cases (very) fine resolution to reach463

similar accuracy as RK. Because of its implicit discretization, this adds to the464

computational time. CN can oscillate depending on the Fourier number [46].465

Figure 5 illustrates the oscillations for CN and D = 1 × 10−6 cm2 s−1. The466

Crank-Nicolson method has the advantage that it is unconditionally stable,467

but that holds theoretically only in the Euclidean norm and linear PDEs with468

homogeneous boundary conditions. In the maximum norm, it has a stability469

criterion [e. g. 47, 48]. The implicit Euler method (BTCS) is stable in both470

norms but has only first-order accuracy in time which is not sufficient in general.471

A first-order method (Euler method) is in general applicable for smooth solutions472

(here in time direction) and if step size restrictions are fulfilled. We do not473

consider it as universally applicable.474

There is numerical diffusion in the upwind methods especially with first-order475

upwind, however, we used higher-order methods in space. For the rhizosphere476

transport problem considered here, a high soil buffer power (fast liquid-solid477

equilibration) helps stabilizing the numerical solution, hence there is no oscillation478

or significant smoothing for the upwind methods at steep solution fronts.479

Providing a strategy to solve the 1D radial rhizosphere transport equation with480

root hairs in less computational time and for a wider range of parameters depends481

at least on the Péclet number and on the CFL condition, which control numerical482

dispersion. The CFL criterion was fulfilled in our simulations for the adaptive483

methods but in some grid-cells the Fourier number was larger than one.484

We found that a finer grid is needed because of steep gradients in medium485

to low effective diffusion cases relative to advection (i. e. v0r0 > Db). Fine486

roots are computationally difficult as they need small ∆r, similar to the low487
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effective diffusion examples. In advection dominant cases, the adaptive Runge-488

Kutta methods with second- or third-order upwind converge with reasonable489

computational effort whereas, in the case of low advection and high effective490

diffusion, the first derivative plays a minor role. If D is high relative to Imax,491

the problem becomes stiff or moderately stiff and non-stiff methods need high492

time resolution because the adaptive step control algorithm rejects more time493

steps than supposed to be necessary for the smoothness of the solution. These494

high effective diffusion (and low uptake rate) scenarios greatly benefit from495

methods that are suitable for stiff differential equations such as BDF and implicit496

Runge-Kutta.497

BDF is a multi-step method and we tested how the order of the starting step498

affects the error propagation since we simply did not want to start with a lower499

order. To our knowledge, an order one BDF as a starter, which is an implicit500

Euler, is often used for the starting step. We used the implicit trapezoidal rule501

here, while explicit RK starter and other methods are also possible. We found502

that accuracy is only slightly affected by a starter of order greater than two for503

BDF2.504

An adaptive method can handle a wide parameter range and still maintains505

accuracy within its tolerance limits, but a small enough starting time step is506

needed, especially if the gradient at t0 or the spatial resolution is high (hence507

the restrictions on the time step size). Such a high gradient is often present in508

rhizosphere models because a relatively high Imax can deplete the liquid phase509

quickly. The starting time step can be algorithmically estimated. However, this510

starting time step is not entitled to be optimal [38]. Therefore we used the511

starting time step similar to the fixed step, eq. (22).512

A mathematically general statement about efficiency would need an O-Notation513

analysis by counting O(1)-operations. However, this is not practical for adaptive514

28



methods. Therefore we used CPU-times as a measure of computational speed,515

being aware that absolute CPU-time measurements are hardware as well as516

software dependent. To ensure comparability of the CPU-times, we implemented517

function calls, such as Runge-Kutta steps, matrix constructions for the implicit518

schemes, and the step size control algorithm, in the same way for the numerical519

schemes. The computational time per time step in the explicit scheme is lower as520

the implicit scheme needs an equation system which is here solved by the Newton-521

Raphson method for each step, where the Jacobian of that equation system522

was built. However, for an implicit method, the time step can be larger. For523

solving the equation systems we used Matlab’s backslash operator, which was524

as efficient as our (tested) O(N) Thomas algorithm solver for tridiagonal systems.525

Memory-wise we stored the results for plotting and comparing. However, if only526

current time steps are needed, storage is simplified to vectors instead of matrices527

like in the architectural model OpenSimRoot. This work led to a development528

of RKCK-CUI and RK3(2)-CUI in OpenSimRoot which made the simulations529

more reliable for a wider range of scenarios and often faster.530

5. Conclusion531

We tested 13 different numerical methods to solve the 1D radial rhizosphere532

model for nutrient depletion and uptake. Our guiding question was how to solve533

the model most accurately and efficiently. We looked at the error of each method534

in the total root nutrient uptake rate over time, i. e. nutrient uptake by the535

root surface and root hairs, and compared the methods based on accuracy and536

CPU-time as a function of grid size. The effective diffusion coefficient was varied537

over a wide range in order to cover uptake of different nutrients such as nitrogen,538

potassium, phosphorus or even almost non-bioavailable solutes. The variation539

of effective diffusion led to different numerical challenges associated with the540
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different solute concentration profiles: from rather flat profiles but stiff problems541

for high effective diffusion to non-stiff problems with steep concentrations profiles542

at the root surface for low effective diffusion. Although CN became the standard543

in rhizosphere literature for solving a single component 1D rhizosphere model, it544

was slower by up to two orders and less accurate by up to one order compared545

to several other methods. We conclude that RKCK would be a better general-546

purpose method for simulating a wide range of parameters with high accuracy547

and low CPU-time.548

Finding the best method is problem dependent, which means depending on mesh549

size, soil type, specific nutrient, and root radius. In a whole root simulation550

with changing conditions, a switch between schemes and mesh sizes based on551

the values of D, Péclet and CFL number is a possible strategy.552

Appendix A. Step size control553

A step size controlling algorithm for embedded Runge-Kutta methods [49, 38] is shown here, where554

p and q are the orders of the embedded Runge-Kutta methods, with p > q and error = O(∆t(min(p,q)+1)).555

556

Algorithm: Step size control for embedded RK (pseudo code)557

1: facmin← 0.5 ▷ not more than two times reduction558

2: safety ← 0.9 ▷ or other values559

3: if rejection ̸= 1 then560

4: facmax← 2 ▷ usually between 1.5 and 5561

5: else562

6: facmax← 1 ▷ set facmax = 1 right after a step rejection563

7: end if564

8: if error ≤ Tol then ▷ continue with larger step565

9: dt(j + 1)← min(safety · dt(j) · ( Tol
error )

1
p , facmax · dt(j))566

10: if dt(j + 1) > hmax then567

11: dt(j + 1)← hmax568

12: end if569

13: t← t + dt(j)570

14: if t + dt(j + 1) > T then ▷ T is simulation time interval, e. g. days571

15: dt(j + 1)← T − t572

16: end if573
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17: j ← j + 1574

18: rejection← 0575

19: else ▷ repeat with smaller step576

20: dt(j)← max(safety · dt(j) · ( Tol
error )

1
q , facmin · dt(j))577

21: if dt(j) < hmin then578

22: dt(j)← hmin579

23: end if580

24: rejection← 1581

25: end if582

Appendix B. Jacobian for CN and BTCS583

CN (Θ = 0.5) was implemented according to Itoh and Barber [11], Barber and Cushman [1]584

with added Θ to enable BTCS (Θ = 1). Here we repeat the details of this implementation to include585

a comprehensive description of the derivatives of the root hair term. Eq. (20) can be rewritten as586

−S1i Ci−1,j+1 + D1 Ci,j+1 − S2i Ci+1,j+1 + Q1 Ih(i,j+1)587

= P 1i Ci−1,j + D2 Ci,j + P 2i Ci+1,j −Q2 Ih(i,j), i = 1, . . . , n− 1,588

with the abbreviations589

S := (∆r/2) · (1 + v0r0/(Deb)),590

S1i := Θ(1− S/ri), D1 := ∆r
2
/(De∆t) + 2Θ,591

S2i := Θ(1 + S/ri), D2 := ∆r
2
/(De∆t)− 2 · (1−Θ),592

P 1i := (1−Θ)(1− S/ri), Q1 := Θ ·∆r
2
/(Deb),593

P 2i := (1−Θ)(1 + S/ri), Q2 := (1−Θ) ·∆r
2
/(Deb).594

Here D1 and D2 are similar to Itoh and Barber [11] but typo corrected, i. e. division instead of595

multiplication by ∆t. For the inner (i = 0) and outer (i = n) boundaries eqs. (10) and (11),596

respectively, the ghost points C−1,. and Cn+1,. outside of the computation domain are defined by597

C−1,j = C1,j − S3
(

Imax(C0,j − Cmin)
Km + C0,j − Cmin

− v0C0,j

)
,598

Cn+1,j = Cn−1,j − A1 Cn,j ,599

with S3 := 2∆r/(Deb) and A1 := S3 v0r0/rn.600
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The discretized equation system F = 0 is then given by601

f0 = −2Θ C1,j+1 + S10 S3
(

Imax(C0,j+1 − Cmin)
Km + C0,j+1 − Cmin

− v0C0,j+1

)
602

+ D1 C0,j+1 + Q1 Ih(0,j+1) − P 10 C−1,j −D2 C0,j − P 20 C1,j + Q2 Ih(i,j),603

fi∈[1,...,n−1] = −S1i Ci−1,j+1 + D1 Ci,j+1 − S2i Ci+1,j+1 + Q1 Ih(i,j+1)604

− P 1i Ci−1,j −D2 Ci,j − P 2i Ci+1,j + Q2 Ih(i,j),605

fn = −2Θ Cn−1,j+1 + (D1 + S2n A1) Cn,j+1 + Q1 Ih(n,j+1)606

− P 1n Cn−1,j −D2 Cn,j − P 2n Cn+1,j + Q2 Ih(n,j).607

The Jacobian J(Cj+1) is tridiagonal of dimension (n + 1× n + 1) with entries [Ji,k] = ∂fi(C)
∂Ck,j+1

:608

[J0,0] = f0
′
, [J0,1] = −2Θ,609

[Jn,n] = D1 + S2n A1 + Q1 I
′
h(n,j+1), [Jn,n−1] = −2Θ,610

[Ji,i] = D1 + Q1 I
′
h(i,j+1), [Ji,i−1] = −S1i, [Ji,i+1] = −S2i,611

612

for (i = 1, . . . , n− 1), where613

f0
′ = S10S3

(
ImaxKm

(Km + C0,j+1 − Cmin)2
− v0

)
+ D1 + Q1 I

′
h(0,j+1),614

I
′
h(.,j+1) =

∂Ih(Cℓ)

∂Cℓ

= Imaxh
Ah

(
Kmh

∂Crh
∂Cℓ(

Crh(Cℓ) − Cmin + Kmh

)2

)
,615

∂Crh

∂Cℓ

=
Kmh

2

(
1 +

Cℓ − Cmin − Y + Kmh√
C2

min − 2Cmin(Kmh
− Y + Cℓ) + K2

mh
+ 2Kmh

(Y + Cℓ) + (Y − Cℓ)2

)
.616
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