000894426 001__ 894426
000894426 005__ 20210914122702.0
000894426 0247_ $$2doi$$a10.3390/pr9081387
000894426 0247_ $$2Handle$$a2128/28571
000894426 0247_ $$2WOS$$aWOS:000690285500001
000894426 037__ $$aFZJ-2021-03218
000894426 041__ $$aEnglish
000894426 082__ $$a570
000894426 1001_ $$0P:(DE-Juel1)164366$$aLoomba, Varun$$b0
000894426 245__ $$aHow Do Operational and Design Parameters Effect Biomass Productivity in a Flat-Panel Photo-Bioreactor? A Computational Analysis
000894426 260__ $$aBasel$$bMDPI$$c2021
000894426 3367_ $$2DRIVER$$aarticle
000894426 3367_ $$2DataCite$$aOutput Types/Journal article
000894426 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1629789207_26022
000894426 3367_ $$2BibTeX$$aARTICLE
000894426 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894426 3367_ $$00$$2EndNote$$aJournal Article
000894426 520__ $$aOptimal production of microalgae in photo-bioreactors (PBRs) largely depends on the amount of light intensity received by individual algal cells, which is affected by several operational and design factors. A key question is: which process parameters have the highest potential for the optimization of biomass productivity? This can be analyzed by simulating the complex interplay of PBR design, hydrodynamics, dynamic light exposure, and growth of algal cells. A workflow was established comprising the simulation of hydrodynamics in a flat-panel PBR using computational fluid dynamics, calculation of light irradiation inside the PBR, tracing the light exposure of individual cells over time, and calculation the algal growth and biomass productivity based on this light exposure. Different PBR designs leading to different flow profiles were compared, and operational parameters such as air inlet flowrate, microalgal concentration, and incident light intensity were varied to investigate their effect on PBR productivity. The design of internal structures and lighting had a significant effect on biomass productivity, whereas air inlet flowrate had a minimal effect. Microalgal concentration and incident light intensity controlled the amount of light intensity inside the PBR, thereby significantly affecting the overall productivity. For detailed quantitative insight into these dependencies, better parameterization of algal growth models is required.
000894426 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000894426 588__ $$aDataset connected to DataCite
000894426 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b1$$eCorresponding author
000894426 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b2$$eCorresponding author
000894426 770__ $$aApplied Computational Fluid Dynamics (CFD)
000894426 773__ $$0PERI:(DE-600)2720994-5$$a10.3390/pr9081387$$gVol. 9, no. 8, p. 1387 -$$n8$$p1387$$tProcesses$$v9$$x2227-9717$$y2021
000894426 8564_ $$uhttps://juser.fz-juelich.de/record/894426/files/processes-09-01387.pdf$$yOpenAccess
000894426 909CO $$ooai:juser.fz-juelich.de:894426$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b1$$kFZJ
000894426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b2$$kFZJ
000894426 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000894426 9141_ $$y2021
000894426 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
000894426 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894426 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROCESSES : 2019$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894426 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894426 920__ $$lyes
000894426 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000894426 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000894426 980__ $$ajournal
000894426 980__ $$aVDB
000894426 980__ $$aUNRESTRICTED
000894426 980__ $$aI:(DE-Juel1)IBG-1-20101118
000894426 980__ $$aI:(DE-Juel1)IBG-2-20101118
000894426 9801_ $$aFullTexts