001     894426
005     20210914122702.0
024 7 _ |a 10.3390/pr9081387
|2 doi
024 7 _ |a 2128/28571
|2 Handle
024 7 _ |a WOS:000690285500001
|2 WOS
037 _ _ |a FZJ-2021-03218
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Loomba, Varun
|0 P:(DE-Juel1)164366
|b 0
245 _ _ |a How Do Operational and Design Parameters Effect Biomass Productivity in a Flat-Panel Photo-Bioreactor? A Computational Analysis
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1629789207_26022
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optimal production of microalgae in photo-bioreactors (PBRs) largely depends on the amount of light intensity received by individual algal cells, which is affected by several operational and design factors. A key question is: which process parameters have the highest potential for the optimization of biomass productivity? This can be analyzed by simulating the complex interplay of PBR design, hydrodynamics, dynamic light exposure, and growth of algal cells. A workflow was established comprising the simulation of hydrodynamics in a flat-panel PBR using computational fluid dynamics, calculation of light irradiation inside the PBR, tracing the light exposure of individual cells over time, and calculation the algal growth and biomass productivity based on this light exposure. Different PBR designs leading to different flow profiles were compared, and operational parameters such as air inlet flowrate, microalgal concentration, and incident light intensity were varied to investigate their effect on PBR productivity. The design of internal structures and lighting had a significant effect on biomass productivity, whereas air inlet flowrate had a minimal effect. Microalgal concentration and incident light intensity controlled the amount of light intensity inside the PBR, thereby significantly affecting the overall productivity. For detailed quantitative insight into these dependencies, better parameterization of algal growth models is required.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 1
|e Corresponding author
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 2
|e Corresponding author
770 _ _ |a Applied Computational Fluid Dynamics (CFD)
773 _ _ |a 10.3390/pr9081387
|g Vol. 9, no. 8, p. 1387 -
|0 PERI:(DE-600)2720994-5
|n 8
|p 1387
|t Processes
|v 9
|y 2021
|x 2227-9717
856 4 _ |u https://juser.fz-juelich.de/record/894426/files/processes-09-01387.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894426
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129333
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROCESSES : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21