000894438 001__ 894438
000894438 005__ 20220628190224.0
000894438 0247_ $$2doi$$a10.1103/PhysRevB.104.064420
000894438 0247_ $$2ISSN$$a1098-0121
000894438 0247_ $$2ISSN$$a2469-9977
000894438 0247_ $$2ISSN$$a0163-1829
000894438 0247_ $$2ISSN$$a0556-2805
000894438 0247_ $$2ISSN$$a1095-3795
000894438 0247_ $$2ISSN$$a1538-4489
000894438 0247_ $$2ISSN$$a1550-235X
000894438 0247_ $$2ISSN$$a2469-9950
000894438 0247_ $$2ISSN$$a2469-9969
000894438 0247_ $$2Handle$$a2128/28460
000894438 0247_ $$2altmetric$$aaltmetric:111610995
000894438 0247_ $$2WOS$$aWOS:000684129900001
000894438 037__ $$aFZJ-2021-03220
000894438 082__ $$a530
000894438 1001_ $$0P:(DE-Juel1)169958$$aGrytsiuk, Sergii$$b0$$eCorresponding author$$ufzj
000894438 245__ $$aMicromagnetic description of twisted spin spirals in the B20 chiral magnet FeGe from first principles
000894438 260__ $$aWoodbury, NY$$bInst.$$c2021
000894438 3367_ $$2DRIVER$$aarticle
000894438 3367_ $$2DataCite$$aOutput Types/Journal article
000894438 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656389959_24430
000894438 3367_ $$2BibTeX$$aARTICLE
000894438 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894438 3367_ $$00$$2EndNote$$aJournal Article
000894438 520__ $$aUsing the model of classical Heisenberg exchange and Dzyaloshinskii-Moriya (DM) interaction, we show that the ground state of the B20 FeGe chiral magnet is a superposition of twisted helical spin-density waves formed by different sublattices of the crystal. Such twisted spin-density waves propagate in the same direction but with different phases and different directions of the rotation axes. We derive an advanced micromagnetic expression describing the exchange and DM interaction for such magnetic structures. In particular, we show that such magnetic order gives rise to new contributions to the micromagnetic energies of the exchange and DM interactions. By employing first-principles calculations based on density functional theory and using our micromagnetic model we show that the magnitude of the spin-spiral twist in B20 FeGe is of the same order as global spiraling. While the energy difference between the ground state of twisted spirals and the ferromagnetic state is in good agreement with the experimental results, for the spin spirals without a twist it is smaller by a factor of 3. In addition, we verify our results by employing spin-dynamics simulations. This calls for new experiments exploring the ground state properties of B20 chiral magnets.
000894438 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894438 536__ $$0G:(DE-Juel1)jara0161_20191101$$aMagnetic Skyrmions from first-principles (jara0161_20191101)$$cjara0161_20191101$$fMagnetic Skyrmions from first-principles$$x1
000894438 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894438 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b1
000894438 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.064420$$gVol. 104, no. 6, p. 064420$$n6$$p064420$$tPhysical review / B$$v104$$x2469-9969$$y2021
000894438 8564_ $$uhttps://juser.fz-juelich.de/record/894438/files/PhysRevB.104.064420.pdf$$yOpenAccess
000894438 909CO $$ooai:juser.fz-juelich.de:894438$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169958$$aForschungszentrum Jülich$$b0$$kFZJ
000894438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000894438 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894438 9141_ $$y2021
000894438 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000894438 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000894438 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894438 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894438 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894438 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000894438 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000894438 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000894438 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000894438 980__ $$ajournal
000894438 980__ $$aVDB
000894438 980__ $$aI:(DE-Juel1)IAS-1-20090406
000894438 980__ $$aI:(DE-Juel1)PGI-1-20110106
000894438 980__ $$aI:(DE-82)080009_20140620
000894438 980__ $$aI:(DE-82)080012_20140620
000894438 980__ $$aUNRESTRICTED
000894438 9801_ $$aFullTexts