000894440 001__ 894440
000894440 005__ 20240712084511.0
000894440 0247_ $$2doi$$a10.1002/solr.202100219
000894440 0247_ $$2Handle$$a2128/28464
000894440 0247_ $$2altmetric$$aaltmetric:107146049
000894440 0247_ $$2WOS$$aWOS:000669260400001
000894440 037__ $$aFZJ-2021-03222
000894440 082__ $$a600
000894440 1001_ $$00000-0003-4506-6727$$aDiekmann, Jonas$$b0
000894440 245__ $$aPathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions
000894440 260__ $$aWeinheim$$bWiley-VCH$$c2021
000894440 3367_ $$2DRIVER$$aarticle
000894440 3367_ $$2DataCite$$aOutput Types/Journal article
000894440 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628745084_12575
000894440 3367_ $$2BibTeX$$aARTICLE
000894440 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894440 3367_ $$00$$2EndNote$$aJournal Article
000894440 520__ $$aPerovskite semiconductors have demonstrated outstanding external luminescence quantum yields, enabling high power conversion efficiencies (PCEs). However, the precise conditions to advance to an efficiency regime above monocrystalline silicon cells are not well understood. Herein, a simulation model that describes efficient p–i–n-type perovskite solar cells well and a range of different experiments is established. Then, important device and material parameters are studied and it is found that an efficiency regime of 30% can be unlocked by optimizing the built-in voltage across the perovskite layer using either highly doped (1019 cm−3) transport layers (TLs), doped interlayers or ultrathin self-assembled monolayers. Importantly, only parameters that have been reported in recent literature are considered, that is, a bulk lifetime of 10 μs, interfacial recombination velocities of 10 cm s−1, a perovskite bandgap (
000894440 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000894440 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894440 7001_ $$0P:(DE-HGF)0$$aCaprioglio, Pietro$$b1
000894440 7001_ $$0P:(DE-HGF)0$$aFutscher, Moritz H.$$b2
000894440 7001_ $$0P:(DE-HGF)0$$aLe Corre, Vincent M.$$b3
000894440 7001_ $$0P:(DE-HGF)0$$aReichert, Sebastian$$b4
000894440 7001_ $$0P:(DE-HGF)0$$aJaiser, Frank$$b5
000894440 7001_ $$0P:(DE-HGF)0$$aArvind, Malavika$$b6
000894440 7001_ $$0P:(DE-HGF)0$$aToro, Lorena Perdigón$$b7
000894440 7001_ $$0P:(DE-HGF)0$$aGutierrez-Partida, Emilio$$b8
000894440 7001_ $$0P:(DE-HGF)0$$aPeña-Camargo, Francisco$$b9
000894440 7001_ $$0P:(DE-HGF)0$$aDeibel, Carsten$$b10
000894440 7001_ $$0P:(DE-HGF)0$$aEhrler, Bruno$$b11
000894440 7001_ $$0P:(DE-HGF)0$$aUnold, Thomas$$b12
000894440 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b13$$ufzj
000894440 7001_ $$0P:(DE-HGF)0$$aNeher, Dieter$$b14
000894440 7001_ $$00000-0002-4023-2178$$aStolterfoht, Martin$$b15$$eCorresponding author
000894440 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202100219$$gVol. 5, no. 8, p. 2100219 -$$n8$$p2100219$$tSolar RRL$$v5$$x2367-198X$$y2021
000894440 8564_ $$uhttps://juser.fz-juelich.de/record/894440/files/diekmann21solrrl.pdf$$yOpenAccess
000894440 909CO $$ooai:juser.fz-juelich.de:894440$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b13$$kFZJ
000894440 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000894440 9141_ $$y2021
000894440 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000894440 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000894440 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000894440 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2019$$d2021-01-29
000894440 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2019$$d2021-01-29
000894440 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000894440 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000894440 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894440 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000894440 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000894440 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000894440 920__ $$lyes
000894440 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000894440 9801_ $$aFullTexts
000894440 980__ $$ajournal
000894440 980__ $$aVDB
000894440 980__ $$aUNRESTRICTED
000894440 980__ $$aI:(DE-Juel1)IEK-5-20101013
000894440 981__ $$aI:(DE-Juel1)IMD-3-20101013