001     894440
005     20240712084511.0
024 7 _ |a 10.1002/solr.202100219
|2 doi
024 7 _ |a 2128/28464
|2 Handle
024 7 _ |a altmetric:107146049
|2 altmetric
024 7 _ |a WOS:000669260400001
|2 WOS
037 _ _ |a FZJ-2021-03222
082 _ _ |a 600
100 1 _ |a Diekmann, Jonas
|0 0000-0003-4506-6727
|b 0
245 _ _ |a Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ions
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1628745084_12575
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Perovskite semiconductors have demonstrated outstanding external luminescence quantum yields, enabling high power conversion efficiencies (PCEs). However, the precise conditions to advance to an efficiency regime above monocrystalline silicon cells are not well understood. Herein, a simulation model that describes efficient p–i–n-type perovskite solar cells well and a range of different experiments is established. Then, important device and material parameters are studied and it is found that an efficiency regime of 30% can be unlocked by optimizing the built-in voltage across the perovskite layer using either highly doped (1019 cm−3) transport layers (TLs), doped interlayers or ultrathin self-assembled monolayers. Importantly, only parameters that have been reported in recent literature are considered, that is, a bulk lifetime of 10 μs, interfacial recombination velocities of 10 cm s−1, a perovskite bandgap ( 𝐸gap) of 1.5 eV, and an external quantum efficiency (EQE) of 95%. A maximum efficiency of 31% is predicted for a bandgap of 1.4 eV. Finally, it is demonstrated that the relatively high mobile ion density does not represent a significant barrier to reach this efficiency regime. The results of this study suggest continuous PCE improvements until perovskites may become the most efficient single-junction solar cell technology in the near future.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Caprioglio, Pietro
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Futscher, Moritz H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Le Corre, Vincent M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Reichert, Sebastian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jaiser, Frank
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Arvind, Malavika
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Toro, Lorena Perdigón
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gutierrez-Partida, Emilio
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Peña-Camargo, Francisco
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Deibel, Carsten
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ehrler, Bruno
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Unold, Thomas
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 13
|u fzj
700 1 _ |a Neher, Dieter
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Stolterfoht, Martin
|0 0000-0002-4023-2178
|b 15
|e Corresponding author
773 _ _ |a 10.1002/solr.202100219
|g Vol. 5, no. 8, p. 2100219 -
|0 PERI:(DE-600)2882014-9
|n 8
|p 2100219
|t Solar RRL
|v 5
|y 2021
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/894440/files/diekmann21solrrl.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894440
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2019
|d 2021-01-29
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21