000894441 001__ 894441
000894441 005__ 20230815122839.0
000894441 0247_ $$2doi$$a10.1103/PhysRevB.104.054506
000894441 0247_ $$2ISSN$$a1098-0121
000894441 0247_ $$2ISSN$$a2469-9977
000894441 0247_ $$2ISSN$$a0163-1829
000894441 0247_ $$2ISSN$$a0556-2805
000894441 0247_ $$2ISSN$$a1095-3795
000894441 0247_ $$2ISSN$$a1538-4489
000894441 0247_ $$2ISSN$$a1550-235X
000894441 0247_ $$2ISSN$$a2469-9950
000894441 0247_ $$2ISSN$$a2469-9969
000894441 0247_ $$2Handle$$a2128/28467
000894441 0247_ $$2WOS$$aWOS:000684119700007
000894441 037__ $$aFZJ-2021-03223
000894441 041__ $$aEnglish
000894441 082__ $$a530
000894441 1001_ $$0P:(DE-Juel1)173990$$aLin, You-Ron$$b0
000894441 245__ $$aVertical position of Sr dopants in the Sr x Bi 2 Se 3 superconductor
000894441 260__ $$aWoodbury, NY$$bInst.$$c2021
000894441 3367_ $$2DRIVER$$aarticle
000894441 3367_ $$2DataCite$$aOutput Types/Journal article
000894441 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628747640_12575
000894441 3367_ $$2BibTeX$$aARTICLE
000894441 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894441 3367_ $$00$$2EndNote$$aJournal Article
000894441 520__ $$aThe discovery of topological superconductivity in doped Bi2Se3 made this class of materials highly important for the field of condensed matter physics. However, the structural origin of the superconducting state remained elusive, despite being investigated intensively in recent years. We use scanning tunneling microscopy and the normal incidence x-ray standing wave (NIXSW) technique in order to determine the vertical position of the dopants—one of the key parameters for understanding topological superconductivity in this material— for the case of SrxBi2Se3. In particular, we analyze the NIXSW data in consideration of the inelastic mean free path of the photoemitted electrons, which allows us to distinguish between symmetry-equivalent sites. We find that Sr atoms are not situated inside the van der Waals gap between the Bi2Se3 quintuple layers but rather in the quintuple layer close to the outer Se planes.
000894441 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894441 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
000894441 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894441 7001_ $$0P:(DE-HGF)0$$aBagchi, Mahasweta$$b1
000894441 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b2
000894441 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b3
000894441 7001_ $$0P:(DE-HGF)0$$aBrede, Jens$$b4$$eCorresponding author
000894441 7001_ $$0P:(DE-Juel1)167128$$aBocquet, François C.$$b5
000894441 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b6$$eCorresponding author
000894441 7001_ $$0P:(DE-HGF)0$$aAndo, Yoichi$$b7
000894441 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8$$ufzj
000894441 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.054506$$gVol. 104, no. 5, p. 054506$$n5$$p054506$$tPhysical review / B$$v104$$x2469-9969$$y2021
000894441 8564_ $$uhttps://juser.fz-juelich.de/record/894441/files/PhysRevB.104.054506.pdf$$yOpenAccess
000894441 909CO $$ooai:juser.fz-juelich.de:894441$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173990$$aForschungszentrum Jülich$$b0$$kFZJ
000894441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b5$$kFZJ
000894441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b6$$kFZJ
000894441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
000894441 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894441 9141_ $$y2021
000894441 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000894441 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000894441 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894441 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894441 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894441 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000894441 980__ $$ajournal
000894441 980__ $$aVDB
000894441 980__ $$aUNRESTRICTED
000894441 980__ $$aI:(DE-Juel1)PGI-3-20110106
000894441 9801_ $$aFullTexts