Home > Publications database > Vertical position of Sr dopants in the Sr x Bi 2 Se 3 superconductor > print |
001 | 894441 | ||
005 | 20230815122839.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.104.054506 |2 doi |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 2469-9977 |2 ISSN |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/28467 |2 Handle |
024 | 7 | _ | |a WOS:000684119700007 |2 WOS |
037 | _ | _ | |a FZJ-2021-03223 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Lin, You-Ron |0 P:(DE-Juel1)173990 |b 0 |
245 | _ | _ | |a Vertical position of Sr dopants in the Sr x Bi 2 Se 3 superconductor |
260 | _ | _ | |a Woodbury, NY |c 2021 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1628747640_12575 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The discovery of topological superconductivity in doped Bi2Se3 made this class of materials highly important for the field of condensed matter physics. However, the structural origin of the superconducting state remained elusive, despite being investigated intensively in recent years. We use scanning tunneling microscopy and the normal incidence x-ray standing wave (NIXSW) technique in order to determine the vertical position of the dopants—one of the key parameters for understanding topological superconductivity in this material— for the case of SrxBi2Se3. In particular, we analyze the NIXSW data in consideration of the inelastic mean free path of the photoemitted electrons, which allows us to distinguish between symmetry-equivalent sites. We find that Sr atoms are not situated inside the van der Waals gap between the Bi2Se3 quintuple layers but rather in the quintuple layer close to the outer Se planes. |
536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 396769409 - Grundlagen der Photoemissionstomographie |0 G:(GEPRIS)396769409 |c 396769409 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bagchi, Mahasweta |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Soubatch, Serguei |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Lee, Tien-Lin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Brede, Jens |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
700 | 1 | _ | |a Bocquet, François C. |0 P:(DE-Juel1)167128 |b 5 |
700 | 1 | _ | |a Kumpf, Christian |0 P:(DE-Juel1)128774 |b 6 |e Corresponding author |
700 | 1 | _ | |a Ando, Yoichi |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Tautz, F. Stefan |0 P:(DE-Juel1)128791 |b 8 |u fzj |
773 | _ | _ | |a 10.1103/PhysRevB.104.054506 |g Vol. 104, no. 5, p. 054506 |0 PERI:(DE-600)2844160-6 |n 5 |p 054506 |t Physical review / B |v 104 |y 2021 |x 2469-9969 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894441/files/PhysRevB.104.054506.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894441 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173990 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)167128 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128774 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128791 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2019 |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|