000894489 001__ 894489
000894489 005__ 20240711085650.0
000894489 0247_ $$2doi$$a10.1002/aenm.202003399
000894489 0247_ $$2ISSN$$a1614-6832
000894489 0247_ $$2ISSN$$a1614-6840
000894489 0247_ $$2Handle$$a2128/30851
000894489 0247_ $$2altmetric$$aaltmetric:100668770
000894489 0247_ $$2WOS$$aWOS:000620225300001
000894489 037__ $$aFZJ-2021-03252
000894489 082__ $$a050
000894489 1001_ $$0P:(DE-HGF)0$$aVoronina, Natalia$$b0
000894489 245__ $$aElectronic Structure Engineering of Honeycomb Layered Cathode Material for Sodium‐Ion Batteries
000894489 260__ $$aWeinheim$$bWiley-VCH$$c2021
000894489 3367_ $$2DRIVER$$aarticle
000894489 3367_ $$2DataCite$$aOutput Types/Journal article
000894489 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648122199_1005
000894489 3367_ $$2BibTeX$$aARTICLE
000894489 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894489 3367_ $$00$$2EndNote$$aJournal Article
000894489 520__ $$aIn this work, the rational design of O′3-type Na[Ni2/3−xCoxSb1/3]O2, a solid solution of Na[Ni2/3Sb1/3]O2–Na[Co2/3Sb1/3]O2, is introduced. Because of the difficulty of the Co3+/2+ redox reaction, the electronic structures of Na[Ni2/3−xCoxSb1/3]O2 compounds are engineered to build electroconducting networks in the oxide matrix through electrochemical oxidation of Co2+ to Co3+, after which the formed Co3+ does not participate in the electrochemical reaction but improves the electrical conductivity in the structure. Density functional theory calculations reveal a reduced bandgap energy after the formation of Co3+ during desodiation of Na1−y[Ni2/3−xCoxSb1/3]O2. Using the oxidized Co3+ species while improving the electrical conductivity, the Na[Ni2/3−xCoxSb1/3]O2 (x = 1/6) electrode exhibits excellent cyclability for 1000 cycles with ≈72.5% capacity retention at 2C (400 mA g−1) and activity even at 50C (10 A g−1) in Na cells. Operando X-ray diffraction and ex situ X-ray absorption near-edge structure investigations reveal suppressed lattice variations upon charge and discharge compared with those of Na[Ni2/3Sb1/3]O2 achieved by the presence of the electrochemical-driven Co3+ in the structure. These findings offer a new strategy for the development of cathode materials for sodium-ion batteries, providing important insight into their structural transformations and the electronic nature of advanced cathode materials.
000894489 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000894489 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894489 7001_ $$0P:(DE-HGF)0$$aKim, Hee Jae$$b1
000894489 7001_ $$0P:(DE-HGF)0$$aKonarov, Aishuak$$b2
000894489 7001_ $$0P:(DE-Juel1)164884$$aYaqoob, Najma$$b3$$ufzj
000894489 7001_ $$0P:(DE-HGF)0$$aLee, Kug-Seung$$b4
000894489 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b5$$eCorresponding author$$ufzj
000894489 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
000894489 7001_ $$00000-0001-6888-5376$$aMyung, Seung-Taek$$b7$$eCorresponding author
000894489 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202003399$$gVol. 11, no. 14, p. 2003399 -$$n14$$p2003399 -$$tAdvanced energy materials$$v11$$x1614-6840$$y2021
000894489 8564_ $$uhttps://juser.fz-juelich.de/record/894489/files/Advanced%20Energy%20Materials%20-%202021%20-%20Voronina%20-%20Electronic%20Structure%20Engineering%20of%20Honeycomb%20Layered%20Cathode%20Material%20for.pdf$$yRestricted
000894489 8564_ $$uhttps://juser.fz-juelich.de/record/894489/files/Electronic-Structure-Engineering-of-Honeycomb.pdf$$yOpenAccess
000894489 909CO $$ooai:juser.fz-juelich.de:894489$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164884$$aForschungszentrum Jülich$$b3$$kFZJ
000894489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b5$$kFZJ
000894489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000894489 9101_ $$0I:(DE-HGF)0$$60000-0001-6888-5376$$aExternal Institute$$b7$$kExtern
000894489 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000894489 9141_ $$y2021
000894489 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2019$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000894489 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2019$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894489 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000894489 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894489 920__ $$lyes
000894489 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000894489 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000894489 9801_ $$aFullTexts
000894489 980__ $$ajournal
000894489 980__ $$aVDB
000894489 980__ $$aUNRESTRICTED
000894489 980__ $$aI:(DE-Juel1)IEK-1-20101013
000894489 980__ $$aI:(DE-82)080011_20140620
000894489 981__ $$aI:(DE-Juel1)IMD-2-20101013