001     894570
005     20210930133543.0
024 7 _ |a 10.1016/j.compag.2021.106380
|2 doi
024 7 _ |a 0168-1699
|2 ISSN
024 7 _ |a 1872-7107
|2 ISSN
024 7 _ |a 2128/28632
|2 Handle
024 7 _ |a WOS:000696702600002
|2 WOS
037 _ _ |a FZJ-2021-03286
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Wilke, Norman
|0 P:(DE-Juel1)172705
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Assessment of plant density for barley and wheat using UAV multispectral imagery for high-throughput field phenotyping
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1631606529_26259
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cereal plant density is a relevant agronomic trait in agriculture and high-throughput phenotyping of plant density is important for the decision-making process in precision farming and breeding. It influences the water as well as the fertilization requirements, the intraspecific competition, and the occurrence of weeds or pathogens. Recent studies have determined plant density using machine-learning approaches and feature extraction. This requires spatially very highly resolved images (0.02 cm) because the accuracy distinctly decreased when images had lower resolution. In this study, we present an approach that uses the linear relationship between plant density manually counted in the field and fractional cover derived from a RGB and a multispectral camera equipped on an unmanned aerial vehicle (UAV). We assumed that at an early seedling stage fractional cover is closely related to the number of plants. Spring barley and spring wheat experiments, each with three genotypes and four different sowing densities, were examined. The practicability and repeatability of the methodology were evaluated with an independent experiment consisting of 42 winter wheat genotypes. This experiment mainly differed for genotypes, sowing density and season.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 1
|u fzj
700 1 _ |a Postma, Johannes A.
|0 P:(DE-Juel1)144879
|b 2
|u fzj
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 3
|u fzj
700 1 _ |a Krieger, Vera
|0 P:(DE-Juel1)172754
|b 4
|u fzj
700 1 _ |a Pude, Ralf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 6
|u fzj
773 _ _ |a 10.1016/j.compag.2021.106380
|g Vol. 189, p. 106380 -
|0 PERI:(DE-600)2016151-7
|p 106380 -
|t Computers and electronics in agriculture
|v 189
|y 2021
|x 0168-1699
856 4 _ |u https://juser.fz-juelich.de/record/894570/files/Final_Version_angepasst_Review_Process-preprint.pdf
|y Published on 2021-08-18. Available in OpenAccess from 2023-08-18.
909 C O |o oai:juser.fz-juelich.de:894570
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144879
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT ELECTRON AGR : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21