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Abstract 5 
Cereal plant density is a relevant agronomic trait in agriculture and high-throughput phenotyping of 6 
plant density is important for the decision-making process in precision farming and breeding. It in-7 
fluences the water as well as the fertilization requirements, the intraspecific competition, and the 8 
occurrence of weeds or pathogens. Using spatially high-resolution images (0.02 cm)recent studies 9 
have determined plant density using machine-learning approaches and feature extraction. However 10 
the accuracy and practical applicability decreased when only lower resolution images were available. 11 
In this study, we present an approach that uses the linear relationship between plant density manu-12 
ally counted in the field and fractional cover derived from a RGB and a multispectral camera 13 
equipped on an unmanned aerial vehicle (UAV). We assumed that at an early seedling stage frac-14 
tional cover is closely related to the number of plants. Spring barley and spring wheat experiments, 15 
each with three genotypes and four different sowing densities, were examined. The practicability and 16 
repeatability of the methodology were evaluated with an independent experiment consisting of 42 17 
winter wheat genotypes. This experiment mainly differed for genotypes, sowing density and season. 18 
At BBCH stage 13 plants were large enough to determine fractional cover also from the lower reso-19 
lution image data. The empirical regression models using multispectral images with a ground sam-20 
pling distance (GSD) of 0.69 cm were also suitable to determine plant density with a high prediction 21 
accuracy for barley and wheat (R² > 0.91, mean absolute error (MAE) < 28 plants). In addition, pre-22 
diction accuracy only slightly declines for multispectral image data having 1.4 cm GSD or RGB image 23 
data having 0.6 cm GSD (MAE < 35 plants m−2). 24 
. In the independent experimental field the prediction accuracy of UAV estimated plant density 25 
showed an R² value of 0.83 and an MAE of less than 21 plants m−2 verifying empirical regression 26 
model robustness across conditions. Furthermore, manual measurements of 11 randomly selected 27 
plots proved sufficient for a user-based training of the regression model (R² = 0.83, MAE < 23 plants 28 
m−2) adapted to the independent experimental field. 29 
The method and the use of UAV image data enable high-throughput phenotyping of cereal plant 30 
density with uncertainties of less than 10 %. The practicability, repeatability and robustness of the 31 
developed approach were demonstrated in this study.  32 
Keywords: plant density, germination rate, barley, wheat, high-throughput phenotyping, UAV.33 

1. Introduction 34 
The non-invasive assessment of plant traits is becoming increasingly important in agriculture. Novel 35 
image processing methods in combination with new sensors and autonomous small aircraft will 36 
change crop phenotyping and agricultural crop production in the coming years [1–3]. In particular, 37 
unmanned aerial vehicles (UAVs) enable a flexible and cost-effective acquisition of high-spatial res-38 
olution image data [4–6]. Several plant traits have already been determined non-invasively, such as 39 
leaf area index [7–9], canopy height [10–12], biomass [13–15] and lodging [16, 17]. These plant traits 40 
are vital for applications in the fields of precision agriculture, breeding research, insurance applica-41 
tions or crop modeling.  42 

The assessment of plant density under field conditions is also part of this ongoing development. 43 
Water and fertilization requirements are dependent on this parameter for agricultural management 44 
purposes. In addition, plant density has an impact on intraspecific competition and the occurrence of 45 
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weeds or pathogens [18–22]. A homogenous and ideal plant density is an important prerequisite for 46 
efficient crop production and potential yield [23–27].  47 
Plant density depends on sowing density and germination rate. Most yield prediction models typi-48 
cally consider sowing density as a trait rather than plant density. Although the germination rate is 49 
often corrected for in sowing density this only takes into account the genotypic variation in germina-50 
tion rate determined under optimal conditions and not the influence of abiotic (temperature, mois-51 
ture, soil, nutrients and frost), biotic (pests and diseases) and management factors (sowing variations, 52 
e.g. depth) [28–34]. Yield predictions can be improved by substituting estimated plant density for 53 
sowing density. However, such an implementation in modeling or decision-making is only feasible 54 
and realistic with a working high-throughput phenotyping approach [35, 36]. The current practice of 55 
representing the conditions in a field or a plot is to count individual plants within several smaller 56 
subsample areas. This approach requires agricultural experts, is time-consuming, expensive and not 57 
representative in the case of spatial variability within the field. 58 

To replace these laborious ground data collection methods, the plant density has already been 59 
determined using different methods for maize [37, 38], potatoes [39, 40] and sugar beet [41]. The 60 
planting structures of these cultivars with evenly spaced seedlings prevent an overlap among neigh-61 
boring plants in early developmental stages and allow a relatively easy quantification of the germi-62 
nation rate. For cereals, however, mechanical seed drilling with a non-even seed distribution is the 63 
standard practice. Plants emerge very close to each other with narrow leaves overlapping among 64 
neighboring plants and single plants develop in multiple tillers further complicating individual plant 65 
identification especially at later stages. Therefore, the aforementioned methods developed for crops 66 
with a clear row structure cannot be reliably applied to cereal crops.   67 

Previous studies determined the plant density of cereals from images recorded by RGB cameras 68 
mounted on an UAV, field bicycle or monopod [21, 42, 43]. Machine-learning techniques based on 69 
feature extraction were used to estimate plant density. High-resolution image data (0.02 cm) were 70 
required in these studies to enable a good prediction accuracy with feature extraction [21, 42, 43]. In 71 
this context, Jin et al. [43] have already demonstrated a distinctly decreasing accuracy using image 72 
data with a lower spatial resolution (0.1 cm). The prediction accuracy was also dependent on the 73 
sowing density with decreasing performance in the case of higher sowing density and probability of 74 
overlapping plants [42, 43]. In summary, the aforementioned approaches only permit a low through-75 
put and adaptability to high sowing frequency. 76 

In the present study, the plant density determination of cereals is based on fractional cover esti-77 
mated from UAV multispectral image data. At the early seedling stage, plant density does not affect 78 
individual plant size. Only the area of overlapping leaves increases, especially with higher plant den-79 
sity. However, even at high plant densities, we expected that there would be a relatively little surface 80 
area overlapping as leaves are narrow. We assumed that a higher value of fractional cover at the early 81 
seedling stage also indicates a larger number of plants and a linear relation. Using this hypothesis, 82 
we trained empirical regression models for barley and wheat based on reference measurements ac-83 
quired in the field and UAV derived fractional cover values. The procedure does not require the 84 
assignment of single leaves to particular seeds. This enabled the determination of plant density from 85 
spatial image data with potentially lower resolution leading to higher practicability of the methodol-86 
ogy. Sankaran et al. [44] had already made use of pixel values of a calculated vegetation index for 87 
germination assessment with a good correlation to ground truth observations. However, the visual 88 
ground truth rating of germination in their study with 10 % increments was only a rough estimation 89 
of plant density. Moreover, the development of an empirical regression model and the transferability 90 
of the model to unknown data was not investigated. 91 

The following study aims to answer the following questions, which can be divided into factors 92 
influencing the accuracy of the empirical regression model (i to v) and the evaluation of transferabil-93 
ity of the method to an independent test site (v, vi): (i) What is the ideal plant developmental stage 94 
for data collection? (ii) What spatial resolution is necessary to achieve both high prediction accuracy 95 
and high throughput? (iii) What influence do plant characteristics (e.g., leaf arrangement, species, 96 
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genotype) have on the methodology? (iv) Is an RGB camera sufficient or is it necessary to use a mul-97 
tispectral camera with five spectral bands? (v) What accuracy can be obtained when the previously 98 
trained empirical regression model is transferred to an independent site and environment? (vi) How 99 
many reference measurements are necessary for a user-based training of an empirical regression 100 
model at an independent site? 101 

2. Material and Methods 102 
2.1 Study site and experimental design 103 
The study was conducted at the agricultural research station Campus Klein-Altendorf (50°37ʹN, 104 
6°59ʹE), which is affiliated to the Faculty of Agriculture of the University of Bonn. Three experimental 105 
fields were investigated on the research campus at 66 m above sea level. The soil can be classified as 106 
a luvisol. 107 
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Fig. 1. Experimental fields 1 and 2, consisting of breeding plots with four sowing densities and three gen-108 
otypes and a different leaf arrangement of each species a Experimental field 1: Spring barley; b Experi-109 
mental field 2: Spring wheat; c Barley plants with mainly erectophile leaf arrangement; d Wheat plants 110 
with mainly planophile leaf arrangement  111 

Two of them consisted of breeding plots (1.4×3 m) arranged in a randomized block design planted 112 
with monocultures of three spring barley genotypes (Avalon, Grace, RGTPlanet, Field 1, Fig. 1a) and 113 
three spring wheat genotypes (Quintus, Kadrilj, Tybalt, Field 2, Fig. 1b).  114 
The genotypes were sown in four different densities (150, 250, 350 and 450 seeds m−2) with eight 115 
repetitions (Fig. 1 a,b). Each repetition was divided into a sampling unit (SU) of one square meterre-116 
sulting in 96 samples per species.  117 
The seeds were sown in rows with a space of 10.4 cm for barley and wheat on 09 April. The experi-118 
ments were treated with 80 kg N/ha on 19 April, herbicides were applied after data acquisition. 119 
Spring wheat and spring barley differed strongly in their leaf arrangement. The leaf orientation of 120 
barley was erectophile with mainly vertical leaves, whereas wheat in this study had a planophile 121 
orientation with mainly horizontal leaves (Fig. 1 c,d). 122 

Experimental field 3 was a breeding trial with 42 winter wheat genotypes arranged in a random-123 
ized block design (1.4 × 3 m). Three repetitions of each genotype were sown with a density of 460 124 
seeds m−2 in rows with a space of 11 cm on 16 October (n =126). Fertilization as well as herbicides 125 
were applied after data acquisition and do not have an influence on the scene in this study. This third 126 
experimental field was used to test the repeatability and practicability of the methodology. The ex-127 
periment differed in genotype, sowing density, row spacing, sowing date and season. Furthermore, 128 
the moisture content and thus the color of the soil varied among the experimental fields. The soils of 129 
experimental field 1 and 2 were dry and thus characterized by a light brown color (Fig. 2a). During 130 
wintertime, the soil of experimental site 3 was much darker because of the higher soil moisture. 131 

2.2 Field validation 132 
For all plots in the three experimental fields, the individual plant numbers were counted in the field 133 
within one square meter. A metal frame covering one square meter was used to facilitate high plant 134 
counting accuracy in the field (Fig. 2a). The corners were marked with pink sticks to highlight the 135 
area of interest for the UAV image data analysis. 136 

Fig. 2 a Example of the field validation setup. Metal frame (1x1 m) used for field plant counting with pink 137 
sticks at the corners to facilitate the identification of the region of interest in the UAV data; b Graphical 138 
illustrations of the principal growth stages in the leaf development of cereal plants according to the scale 139 
of the Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH)  (modified accord-140 
ing to Meyer [45]). 141 

Plant counting in the field was conducted according to the Biologische Bundesanstalt, Bun-142 
dessortenamt und Chemische Industrie (BBCH) scale [45] at stage 11 when the first leaf was unfolded 143 
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and the tip of the second leaf became visible (Fig. 2b). BBCH 11 has two main advantages as a refer-144 
ence point. First, the developmental stage enables to consider delayed development of seeds (BBCH 145 
10) during the reference measurement. Second, at this stage the plant only consists of one unfold-146 
edleaf and therefore it is still possible to separate the individual plants, even if the seeds have germi-147 
nated closely side by side. 148 

2.3 Unmanned aerial vehicle platform and sensor 149 
In this study, we used the Falcon 8 octocopter (Ascending Technologies GmbH, Krailing, Germany) 150 
for data acquisition. The octocopter was equipped with a Sony Alpha 6000 (Sony Europe Limited, 151 
Weybridge, Surrey, UK) RGB camera (24 megapixels, 6000 × 4000 pixels). A fixed lens with a focal 152 
length of 20 mm was mounted on the camera, resulting in a spatial resolution of 0.20 cm at a flight 153 
altitude (FA) of 10 m above ground level. Moreover, we used a MicaSense RedEdge multispectral 154 
camera (Micasense, Seattle, USA), which contains five spectral bands to additionally cover the red 155 
edge (RE) and near infrared (NIR) spectral range. Image data at an FA of 10 m above ground level 156 
resulted in a spatial resolution of 0.69 cm. 157 
The multispectral camera was connected to an incoming light sensor that recorded solar irradiance 158 
during image data acquisition. Together with a radiometrically calibrated reference panel acquired 159 
before and after the flight, the irradiance measurements were used for the radiometric correction of 160 
the image data. Both cameras as well as the DSL were integrated in a gimbal to compensate for pitch 161 
and roll movements of the UAV platform. Depending on the wind speed, the power of the battery 162 
was sufficient for a flight duration between 10 and 15 minutes. 163 

2.4 Unmanned aerial vehicle data acquisition 164 
A planned waypoint pattern with 60% across and 80% along track overlap was used for image data 165 
acquisition. The RGB images were recorded at a shutter speed of 1/1000 seconds and stored in JPEG 166 
format. The images of the five spectral bands acquired by the multispectral camera were separately 167 
saved as TIFF files.  168 
We covered the experimental fields 1 and 2 four times. Table 1 provides an overview of the different 169 
acquisition dates, growth stages, flight altitudes and illumination conditions. At the beginning of data 170 
acquisition, barley was already at BBCH stage 12, while wheat was at stage 11. For the subsequent 171 
acquisition dates, the plants were at the next BBCH stage (Table 1). For both crops, we recorded data 172 
at BBCH stages 12, 13 and 14, which were expected to be the most appropriate growth stages for plant 173 
density assessment.  174 
Table 1. Data acquisition of the experimental fields 1 (barley) and 2 (wheat) with information on BBCH 175 
stages of the plants, sensors used, flight altitude and illumination conditions for the data point. S: Direct 176 
solar illumination during data acquisition; (S) Minor clouds but predominantly direct solar illumination; 177 
O: Overcast sky; (O) Short periods of direct solar illumination but mainly overcast sky. 178 

Nr. Date 
BBCH Stage 

Sensor 
Flight alti-
tude (m) 

Illumination conditions 
Barley Wheat Barley Wheat 

1 22.04.2018 12 11 
RGB 

10 (S) 

S  
30 O  

Multispectral 
10 (S)  
20 S  

2 26.04.2018 13 12 
RGB 

10 
O  

(O)   
30 O 

Multispectral 
10 (O)  S  
20 O  O  

3 30.04.2018 14 13 RGB 
10 

S O 
30 
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Multispectral 
10 

O  
20 

4 04.05.2018 15 14 
RGB 

10 

S  
30 

Multispectral 
10 
20 

 179 
In addition to the different spectral and spatial properties of the RGB and multispectral images, data 180 
were acquired from two different altitudes with both cameras. This allowed us to investigate which 181 
spatial and spectral resolutions were optimal for each BBCH stage. The FAs of both cameras and the 182 
corresponding ground sampling distance (GSD) are summarized in Table 2.  183 
 184 
Table 2. Spatial resolution of the UAV images depending on the sensor and the flight altitude 185 
 186 

Sensor RGB Multispectral 
Flight altitude (m) 10 30 10 20 

Ground sampling distance (cm/pixel) 0.20 0.59 0.69 1.38 
 187 
Furthermore, illumination conditions varied between direct solar illumination, completely overcast 188 
sky and the combination of both conditions at the different dates of data acquisition (Table 1). The 189 
first and fourth data sets were acquired under predominantly direct solar, while the second and third 190 
data sets were recorded under predominantly overcast conditions. 191 

For experimental field 3, a data set was acquired on 17 November, at BBCH stage 12, with the 192 
multispectral sensor from an FA of 20 m above ground level (GSD = 1.38 cm) under overcast condi-193 
tions. For these data acquisition parameters, flight altitude and sensor were selected based on the 194 
results of the best-performing wheat empirical regression model in relation to the lower GSD. 195 

2.5 Data processing 196 
Structure from motion (SfM) algorithms were used to process the individual UAV images with 197 
Agisoft Metashape software (Agisoft LLC, Saint Petersburg, Russia, version 1.5.5). The algorithms 198 
identify corresponding images by means of feature recognition. Using a certain number of overlap-199 
ping images, the software recreates their orientation in a spatial three-dimensional (3D) structure [46, 200 
47]. The primary product of the reconstruction is a 3D point cloud. The secondary and main product 201 
for this study is the two-dimensional orthomosaic which was used for further analysis. For the mul-202 
tispectral imagery, the radiometric calibration provided by MicaSense integrated into Agisoft 203 
Metashape was included in the processing workflow [48]. The solar irradiance acquired by the up-204 
ward-looking sensor of the camera in combination with the reference panel allowed the radiometric 205 
calibration of the image data and the calculation of spectral reflectance for each pixel in the orthomo-206 
saics. 207 
The excess green minus excess red (ExGR) [49] vegetation index was calculated for the RGB camera 208 
data (Equation 1) and the normalized difference vegetation index (NDVI) [50] for the multispectral 209 
data (Equation 2). 210 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   =    
𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁  − 𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑅𝑅𝑅𝑅

 (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅   =    (2 Green − Red − Blue) − (1.4 𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐸𝐸𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺) (2) 

The vegetation indices finally allowed the fractional cover assessment by applying a threshold 211 
that divided the pixels into two classes; foreground (plant pixels) and background (soil pixels). The 212 
threshold was automatically determined by the variance between two classes based on the Otsu 213 
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method [51]. The use of Otsu thresholding is an established method based on the aforementioned 214 
variance between two classes to distinguish vegetation from the background [39, 52–55]. The proce-215 
dure and segmentation performance are exemplarily illustrated in Fig. 3. Shapefiles based on the 216 
aforementioned SU were finally used to calculate the fractional cover (number of plant pixels per 217 
square meter) for the calculated vegetation indices (ExGR, NDVI) in the processed orthomosaics (Fig. 218 
3). 219 
Fig. 3. a Section of an UAV RGB orthomosaic at BBCH stage 13 b Calculated ExGR in the region of interest 220 
c Segmentation of plants (white) and background (black) using the ExGR and Otsu thresholding (c). 221 

 222 

2.6 Statistical analysis 223 
The manually counted plant density in combination with the determined fractional cover per SU 224 
allowed to develop linear empirical regression models for plant density assessment. This method 225 
assumes a linear relationship between two variables: A dependent variable like fractional cover and 226 
an independent variable (variable of interest) like plant density in this study. The prediction of the 227 
plant parameter is based on a fitting function between the independent and dependent variable [56] 228 
For this, , a k-fold cross-validation was used to estimate the model and test the error rate. Firstly, we 229 
randomly divided the data sets of experimental fields 1 and 2, each with a sample size of 96, 48 times 230 
into a calibration and validation data set for the empirical regression model development. Two-thirds 231 
were used to train the model (calibration), whereas the remaining third was used to evaluate the 232 
model performance (validation). Across the models, we determined the performance using R [57] 233 
based on the averaged coefficient of determination (R²), root mean square error (RMSE) and mean 234 
absolute error (MAE). The advantage of the MAE over the RMSE is that it gives the same weight to 235 
all errors. Therefore, the MAE is more robust to outliers. In contrast, the commonly used RMSE 236 
weights errors with larger absolute values more than errors with smaller absolute values and thus is 237 
more sensitive to outliers [58, 59]. 238 
In order to identify which settings provide the highest model accuracies and smallest errors, three- 239 
way ANOVAs were conducted to verify the MAE including a Tukey post-hoc test. ANOVAs were 240 
fitted for each species separately. The following model in R notation was used: MAE ~ (Vegetation 241 
Index * BBCH * GSD).  242 

Secondly, a previously calibrated empirical regression model obtained from experimental field 243 
2 was transferred to the third experimental field according to Equation 3. In this context, the best- 244 
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performing wheat model for the low GSD imagery and multispectral camera was chosen (Table 4, 245 
BBCH 12, NDVI, 20 m; Slope = 0.17, Intercept = -15.82). By transferring a previously calibrated em-246 
pirical regression model to an independent data set with a different experimental design (genotypes, 247 
sowing densities) and environmental conditions (season, soil color) it was possible to verify the 248 
model robustness and the repeatability of the methodology at the same time.  249 

𝑈𝑈𝑈𝑈𝑁𝑁 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅 𝑝𝑝𝑝𝑝𝑒𝑒𝐺𝐺𝑒𝑒 𝑅𝑅𝑅𝑅𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 =
fractional cover − intercept

slope
 (3) 

In addition, we again randomly divided the data, consisting of 126 samples, 63 times into a calibration 250 
and validation data set for the third experimental field. Each time either 1/2, 1/3, 1/4, 1/6, 1/8, 1/11, 251 
1/15 or 1/25 of the total number of samples was used for model calibration. Thus, it was possible to 252 
identify the minimum number of reference measurements required to build up a user-based empiri-253 
cal regression model adapted to a specific experimental layout and environment. Each time, the re-254 
maining part of the data set was used to validate the performance of the model based on the averaged 255 
R², RMSE and MAE. To identify significant deviations between the different sample sizes used for 256 
the model calibration, one-way ANOVAs, including a Tukey post-hoc test, were conducted to verify 257 
the MAE. 258 
  259 
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3. Results  260 
3.1 Experimental field 1: Barley 261 
The results of all individual models predicting the plant density of spring barley from UAV fractional 262 
cover values are summarized in Table 3. It can be seen that the spatial resolution had a substantial 263 
impact on ExGR model performance at the early stage of leaf development with only two unfolded 264 
leaves per plant (BBCH 12). The high GSD (0.20 cm) provided a model performance with an R² of 265 
0.92 and an MAE of 26 plants m−2. With decreasing GSD (0.59 cm), the correlation declined (R² = 0.70) 266 
with regression error metrics (RMSE, MAE) of more than 55 plants m−2 (Table 3). In contrast, the spa-267 
tial resolution had less impact on model performance at BBCH stage 12 using the NDVI to predict 268 
the plant density. The results of the low GSD (1.38 cm) showed only slightly lower model perfor-269 
mance (R² = 0.90, MAE = 29 plants m−2) in comparison to the model constructed with the high GSD 270 
data (0.69 cm). This model provided the best performance with the highest R² of 0.92 and an MAE of 271 
24 plants m−2 (Table 3).  272 
Table 3. Statistical relationship between manually counted plant density and the fractional cover of bar-273 
ley at different BBCH stages, VIs, FAs and GSDs. Averaged statistical measures were computed across 274 
the empirical regression models randomly divided into calibration and validation data sets. Different let-275 
ters indicate significant differences between MAE (p < 0.05). VI = vegetation index; FA = flight altitude; 276 
GSD = Ground sampling distance; R² = averaged coefficient of determination; RMSE = averaged root 277 
mean square error; MAE = mean absolute error; ExGR = excess green red; NDVI = normalized difference 278 
vegetation index.  279 

BBCH VI 
FA 

(m) 

GSD 

(cm) 

Illumi-

nation 

Calibration (n = 64) Validation (n = 32) 

Slope Intercept R² Slope Intercept R² RMSE MAE 

12 

ExGR 
10 0.20 (S) 0.051 -1.666 0.91 1.010 -0.553 0.92 34 26ab 

30 0.59 O 0.085 -6.632 0.68 1.031 -6.796 0.70 75 55h 

NDVI 
10 0.69 (S) 0.089 -10.107 0.93 1.017 -5.217 0.92 32 24a 

20 1.38 S 0.105 -15.201 0.89 1.009 -3.436 0.90 37 29bc 

13 

ExGR 
10 0.20 O 0.077 -1.556 0.92 1.007 -3.432 0.92 34 26ab 

30 0.59 O 0.139 -12.822 0.87 1.001 -0.766 0.89 40 31c 

NDVI 
10 0.69 (O) 0.108 -7.756 0.90 1.010 -1.392 0.90 38 26ab 

20 1.38 O 0.153 -15.301 0.90 1.012 -1.727 0.90 37 26ab 

14 

ExGR 
10 0.20 S 0.113 0.422 0.80 0.984 4.957 0.78 56 44g 

30 0.59 S 0.177 -22.158 0.84 0.987 5.034 0.83 48 34d 

NDVI 
10 0.69 O 0.130 -3.319 0.85 1.018 -4.930 0.85 47 35d 

20 1.38 O 0.162 -8.280 0.83 1.022 -5.527 0.84 49 38ef 

15 

ExGR 
10 0.20 S 0.111 24.883 0.84 0.998 0.789 0.83 50 41f 

30 0.59 S 0.147 21.045 0.82 0.999 -2.178 0.83 50 39ef 

NDVI 
10 0.69 S 0.163 4.893 0.85 0.996 0.970 0.86 45 36de 

20 1.38 S 0.184 5.947 0.84 1.001 -0.997 0.85 47 39ef 

 280 
At BBCH stage 13, the best validation performance was observed for the ExGR with uncertainties of 281 
less than 10% for both GSDs (GSD = 0.20 cm, R² = 0.92, MAE = 26; GSD = 0.59 cm, R² = 0.89, MAE = 282 
31), also illustrated in Fig. 4. Moreover, BBCH stage 13 was as well the optimal development stage 283 
for the multispectral data and low GSD (NDVI, 0.69 cm), which led to an R² of 0.90 and MAE of 26 284 
plants m−2 (Table 3). The regression line showed a good match to the 1:1 line, with almost no over- or 285 
underestimation of the predicted plant density (Fig. 4, a-d).  286 
The model performance of both vegetation indices declined in the subsequent growth stages (BBCH 287 
14, 15), where the leaves grow in size and the plants develop further leaves. The R² of the regression 288 
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models, varying between 0.78 and 0.86, was still high, but the regression error metrics (RMSE, MAE) 289 
of 34-44 plants m−2 indicated lower model accuracy (Table 3).  290 
In general, a higher BBCH stage led to a higher slope in the calibration models (Table 3). This was 291 
influenced by the fact that areas with a higher number of plants have a proportionally stronger in-292 
crease in fractional cover over time compared to areas with a lower number of plants. The slopes in 293 
the validation models with values around one and intercepts of around zero for almost all BBCH 294 
stages demonstrated the high prediction accuracy of the regression models.  295 

3.2 Experimental field 2: Wheat 296 
The model performance at early leaf development stages of spring wheat (BBCH 11, 12) was also 297 
influenced by the spatial resolution. The ExGR calculated from the high GSD (0.20 cm) data led to a 298 
significantly higher prediction accuracy compared to the models based on the low GSD (0.59 cm) 299 
data (Table 4). The spatial resolution has less impact on model performance when the NDVI was used 300 
for plant density assessment. The NDVI provided similar model accuracies for data sets recorded 301 
from different GSDs within a BBCH stage. Even at BBCH stage 12, the model for multispectral data 302 
and low GSD imagery (NDVI, 1.38 cm) already led to the best performance (R² = 0.89, MAE < 29 303 
plants m−2) with uncertainties of less than 10 % (Table 4). However, it can be observed that the model 304 
made use of the image data with a lower GSD (1.38 cm) led to better results compared to the model 305 
based on data with the higher GSD (0.69 cm). Considering the illumination conditions, the high GSD 306 
data was acquired under sunny, while the low GSD data was recorded under cloudy conditions. 307 
Table 4. Statistical relationship between manually counted plant density and the fractional cover of 308 
wheat at different BBCH stages, VIs and FAs. Averaged statistical measures were computed across the 309 
empirical regression models randomly divided into calibration and validation data sets. Different letters 310 
indicate significant differences between MAE (p < 0.05). 311 

BBCH VI 
FA 

(m) 

GSD 

(cm) 

Illumi-

nation 

Calibration (n = 64) Validation (n = 32) 

Slope Intercept R² Slope Intercept R² RMSE MAE 

11 

ExGR 
10 0.20 S 0.029 1.394 0.81 1.007 -3.532 0.81 52 40fg 

30 0.59 S 0.036 -1.706 0.59 1.007 -4.064 0.60 87 67j 

NDVI 
10 0.69 S 0.086 -7.358 0.83 1.000 0.414 0.83 50 39fg 

20 1.38 S 0.078 -11.406 0.80 1.010 -2.157 0.81 54 42g 

12 

ExGR 
10 0.20 (O) 0.082 -8.013 0.83 1.013 -4.587 0.84 48 38ef 

30 0.59 O 0.089 -14.445 0.63 1.039 -11.496 0.63 86 62i 

NDVI 
10 0.69 S 0.116 -5.648 0.84 1.011 -4.485 0.85 45 34cd 

20 1.38 O 0.171 -15.628 0.89 1.004 -3.493 0.89 37 29ab 

13 

ExGR 
10 0.20 O 0.148 -4.750 0.87 1.004 -1.623 0.87 41 31bc 

30 0.59 O 0.219 -26.645 0.86 1.014 -3.006 0.85 45 35de 

NDVI 
10 0.69 O 0.160 4.893 0.91 1.020 -4.927 0.91 34 28a 

20 1.38 O 0.182 6.681 0.87 1.023 -5.911 0.87 42 33bc 

14 

ExGR 
10 0.20 S 0.103 17.981 0.83 0.960 10.483 0.82 50 38fg 

30 0.59 S 0.133 16.955 0.78 0.956 10.650 0.76 59 46h 

NDVI 
10 0.69 S 0.180 1.230 0.90 1.019 -4.790 0.90 36 28a 

20 1.38 S 0.200 9.290 0.86 1.017 -4.812 0.87 43 34cd 

 312 
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Fig. 4. Linear regression between manually counted and UAV estimated plant density for different vege-313 
tation indices and GSDs obtained for BBCH stage 13 (n = 96). The UAV estimated plant density represents 314 
an averaged number of plants computed by the randomly divided models for (a-d) barley and (e-h) wheat. 315 
Black lines represent regression lines with 95% confidence intervals; blue lines represent 1:1 line. 316 
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Almost the same prediction accuracy was observed for the NDVI model constructed using the low 317 
GSD data (1.38 cm) at BBCH stage 13 (Fig. 4), while the higher GSD model provided the highest R² 318 
of 0.91 and the lowest MAE of 28 plants m−2 of all models (Table 4). The best model performances for 319 
the ExGR and both GSDs were also observed when the third leaf of the plants was unfolded (BBCH 320 
13). Both models had an R² higher than 0.85 and MAE of less than 35 plants m−2 (Fig. 4). Similar to 321 
barley, the regression lines showed a good match with the 1:1 lines and only less scattering was visi-322 
ble (Fig. 4, e-h). At BBCH stage 14, the accuracy for the ExGR models clearly decreased. In contrast, 323 
the NDVI models led to similar performances as at the BBCH stage 13 (Table 4). 324 
As already observed for barley, higher BBCH stages led to a higher slope value for the calibration 325 
models (Table 4). In contrast, these slope values were higher for wheat compared to barley (Table 3). 326 
The slopes of the validation models had values close to one, which illustrated the high prediction 327 
accuracy of the generated models (Table 4). However, the performance evaluation for wheat led to a 328 
slightly lower R² and higher regression error metrics compared to barley. 329 

3.3 Ideal parameters for data acquisition  330 
The three-way ANOVA for the MAE was calculated for barley (Additional file 1: Table S1, Table S2) 331 
and wheat (Additional file 1: Table S3, Table S4) to identify the ideal parameters for plant density 332 
assessment and data acquisition. In the case of barley the vegetation index, the BBCH stage and the 333 
interaction between BBCH and GSD explained most of the variation in the methodology (Additional 334 
file 1: Table S1). The ANOVA results identified in general the NDVI as the vegetation index, BBCH 335 
13 as the development stage and the high GSD as the ideal parameter for data acquisition and plant 336 
density assessment of barley (Additional file 1: Table S2) 337 
For wheat, the vegetation index clearly explained most of the variation (Additional file 1: Table S3). 338 
The GSD also had a high impact on the plant density assessment. The interaction between BBCH and 339 
GSD was the third most important factor. Despite the investigated differences of barley and wheat, 340 
the ANOVA of wheat identified the same predictors (NDVI, BBCH 13, high GSD) for data acquisition 341 
and plant density assessment (Additional file 1: Table S4).  342 

3.4 Experimental field 3: Investigate repeatability  343 
In the case of the third experiment, two investigations were conducted to evaluate the practicability 344 
and repeatability of the developed methodology. Firstly, the best-performing empirical regression 345 
model for wheat and the low GSD (Table 4, BBCH 12, NDVI, 20 m; slope = 0.177, intercept = -15.628) 346 
was applied to the data of experimental field 3 according to Equation 3. The best-performing model 347 
of the lower GSD was considering instead of the ideal model performance to increase the practicabil-348 
ity of the methodology. The experiments differed with regard to season, soil color, genotypes and 349 
sowing density. Especially with its 42 genotypes and the large number of variations in plant charac-350 
teristics, the third experimental field was well suited for testing the repeatability and practicability of 351 
the previously developed regression model. 352 
The transfer of the calibrated empirical regression model for UAV based plant density prediction 353 
yielded in a high prediction accuracy. The determined MAE was lower than 20 plants m−2 and the R² 354 
of 0.83 was relatively high (Fig. 5a). The regression line showed a good match with the 1:1 line and 355 
only lower values were slightly overestimated.  356 

Secondly, the size of the calibration data subset was reduced stepwise to determine the mini-357 
mum number of field measurements necessary for a user-based calibration of a new empirical regres-358 
sion model (Table 5). The starting calibration subset consisting of 63 samples also provided the high-359 
est accuracy with an MAE of less than 21 plants m−2 and an R² of 0.83. The prediction accuracy of the 360 
user-based calibration model based on the 63 training samples and the corresponding scatterplot (Fig. 361 
5b) were almost similar compared to the transferred calibrated empirical regression model from ex-362 
perimental field 2 (Fig. 5a). 363 

 364 
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Table 5. Analysis results of the number of field measurements necessary to calibrate an empirical regres-365 
sion model to a specific layout or environment (n = 126). The calibration sample size was reduced step-366 
wise from 63 to five reference measurements, while the remaining samples were used to validate the per-367 
formance of the calibrated models. Averaged statistical measures were computed across the empirical 368 
regression models randomly divided into calibration and validation data sets for each sample size. Differ-369 
ent letters indicate significant differences between MAE (p < 0.05).  370 

Experimental field 3 

Calibration  Validation  

n Slope Intercept R²  n Slope Intercept R² RMSE MAE 

63 0.169 -14.868 0.83  63 1.005 -2.246 0.83 25 21a 

42 0.169 -14.955 0.83  84 1.008 -2.976 0.83 25 21a 

32 0.169 -14.972 0.82  94 1.009 -2.885 0.83 25 21a 

21 0.168 -14.446 0.81  105 1.024 -10.355 0.83 26 22a 

16 0.168 -14.441 0.81  110 1.026 -11.117 0.83 27 22a 

11 0.165 -12.837 0.81  115 1.063 -26.407 0.83 28 23ab 

8 0.165 -13.404 0.78  118 1.086 -35.029 0.83 31 26bc 

5 0.161 -11.325 0.79  121 1.154 -66.075 0.83 36 29c 

The continuous reduction of the calibration sample size from 63 to 11 samples led to no signifi-371 
cant changes in model performance (MAE < 23 plants m−2). The slope and intercept values of the 372 
validation regression functions slightly increased with decreasing size of the calibration samples 373 
(Table 5). However, the residual deviations and the 95 confidence intervals were quite uniformly 374 
independent of the calibration sample sizes (Fig. 5b-d). The last two reduction steps from 11 to 375 
only eight and five samples led to significantly lower model performances (MAE > 26 plants m−2) 376 
(Table 5). Additionally, the corresponding scatterplots (Fig. 5e,f) illustrated an underestimation 377 
of lower values and an overestimation of higher values. 378 
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Fig. 5. Linear regression between manually counted wheat plant densities and those estimated from UAV 379 
data at BBCH stage 12 for experimental field 3 with two investigations (n = 126) a The empirical regression 380 
model from experimental field 2 was transferred to the data of experimental field 3 b-f Investigation of the 381 
necessary number of field measurements for a user-based calibration of an empirical regression model 382 
based on stepwise reduction of calibration size to b 63 samples; c 32 samples; d 11 samples; e 8 samples 383 
and; f 5 samples. The UAV estimated plant density represents an averaged number of plants computed by 384 
the randomly divided models. Black lines represent regression lines with 95% confidence intervals; blue 385 
lines represent 1:1 lines. S = slope; I = intercept.  386 
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4. Discussion 387 
In the study presented here, UAV data were evaluated for high-throughput field phenotyping of 388 
plant density. The results demonstrated that plant density could be predicted with potential uncer-389 
tainties of less than 10%. In the following, the introductory questions are discussed in detail. 390 

BBCH stage 13 was identified as the plant developmental stage best suited for UAV data acqui-391 
sition (Additional file 1: Table S1-S4). At this growth stage, the MAEs of the validation models were 392 
between 25 and 34 plants m−2 and therefore similar compared to previous studies focusing on wheat 393 
[21, 42, 43]. In addition, we observed a high prediction accuracy at BBCH stage 12 when plant density 394 
prediction was based on the data recorded from the higher GSD (Ø MAE < 30 plants m−2) (Table 2, 395 
4). In summary, the plants or the resolution needs to be large enough to detect the fractional cover 396 
accurately. Even with four unfolded leaves per plant (BBCH 14) predictions of plant density were 397 
possible with MAEs ranging from 28 to 46 plants m−2. However, the model accuracy partly declined 398 
at BBCH stage 14 and 15 compared to the previous stages. The leaves grow in size and the plants 399 
develop additional leaves (Fig 2b), resulting in a higher overlap between neighboring plants. 400 
In other studies, the investigated methodology was limited to a specific growth stage [21, 22, 42–44]. 401 
The approach presented here, however, allowed plant density to be estimated from UAV data ac-402 
quired during BBCH stages 12 to 14. This makes the proposed method more practical, since UAV 403 
data acquisition is possible in a longer time window.  404 

The models constructed using the higher GSD data enabled a higher prediction accuracy of plant 405 
density. However, especially at the later stages of plant development (BBCH 13 onwards), the differ-406 
ences in the predictions between the models for the GSDs were not great. At BBCH stage 13, the 407 
averaged MAE was lower than 31 plants m−2 for the low GSD image data (ExGR-30 m, NDVI-20 m) 408 
and had an almost similar prediction accuracy compared to the high GSD (ExGR-10 m, NDVI-10 m, 409 
Ø MAE < 28 plants m−2 ). In principle, the prediction accuracy was influenced less by the spatial res-410 
olution using the NDVI for plant density assessment (Table 2, Table 4). We conclude that multispec-411 
tral data recorded with a lower GSD than 1.38 cm may predict a similar accuracy to increase the 412 
throughput of the approach. 413 
In comparison to other studies [21, 22, 42, 43], the present methodology is not limited to spatially very 414 
highly resolved image data (0.02 cm) in order to obtain precise estimates of plant density. The results 415 
showed that for ideal conditions RGB data with 0.6 cm and multispectral data with 1.4 cm spatial 416 
resolution were sufficient to predict the plant density of numerous plots, greatly enhance the 417 
throughput of the approach. In addition, the automatic image acquisition of the UAV and the use of 418 
orthomosaics instead of individual images [22, 42, 43] are ideally for large scales and decision-making 419 
process in precision farming and breeding. 420 

Cereals such as wheat and barley have comparable plant structures, especially at the early leaf 421 
developmental stages. However, some individual characteristics such as the leaf arrangement can be 422 
different. The results stressed that it was essential to distinguish between planophile (wheat) and 423 
erectophile (barley) leaves in the process of developing empirical regression models having the ca-424 
pability to estimate plant density precisely. In a nadir UAV image, a leaf with horizontal orientation 425 
(planophile) covers a larger soil area and consists of a higher number of green pixels in comparison 426 
to a leaf with vertical orientation (erectophile) (Fig. 1 c,d). This results in higher fractional cover in 427 
the case of the observation of planophile cereals. For that reason, the wheat calibration models had 428 
steeper slopes compared to the barley calibration models. The impact of the leaf arrangement on the 429 
methodology was not investigated in previous studies focusing on the assessment of plant density 430 
[21, 22, 42–44, 60].  431 

The comparison of the sensors revealed that the multispectral camera had a higher prediction 432 
accuracy compared to the RGB sensor (Additional file 1: Table S2, Table S4). Especially for the pre-433 
diction of wheat plant density, the vegetation index was the most important factor (Additional file 1: 434 
Table S3). The predominantly horizontally oriented leaves of wheat caused more mixed pixels. The 435 
additional near- infrared spectral band used for the calculation of the NDVI is advantageous for dis-436 
tinguishing plant from soil pixels. Furthermore, the radiometric correction of the multispectral data 437 
based on the solar irradiance sensor and reference panel enabled to convert the raw pixel information 438 
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into absolute spectral reflectance. This made the method more robust to varying illumination condi-439 
tions among data sets and during data acquisition (Table 1). Based on these findings, multispectral 440 
data are recommended in particular for genotypes with planophile leaves.  441 

In order to test the repeatability and robustness of the approach, in particular with regard to 442 
genotypic varieties, the calibrated empirical regression model constructed for spring wheat was 443 
transferred to an independent breeding experiment with 42 different winter wheat genotypes. Visual 444 
field observation revealed only little variability among genotypes in the early leaf developmental 445 
stages. This observation was similar to the findings of Jin et al. [43]. The transferred regression model, 446 
therefore, provided good prediction accuracy across the genotypes (R² = 0.83, MAE < 20 plants m−2). 447 
The large variation in the training dataset resulted in a robust model, which avoids the need for fur-448 
ther genotypic model adaptation. For this reason, a specific re-calibration, which is usually required 449 
for machine-learning techniques [42, 43, 60], was not obligatory using this approach and comparable 450 
conditions in this study. 451 

Estimating the required number of reference measurements in the field to calibrate a user-based 452 
empirical regression model is needed in the case of different seed row spacing, illumination condi-453 
tions and different spatial resolution of the UAV data. For this user-based calibration, 11 randomly 454 
selected field measurements were already sufficient in this study to train a robust model (MAE < 23 455 
plants m−2). No significant differences in prediction accuracy were observed by using a small training 456 
subset of 11 samples instead of a larger one consisting of 63 samples (Table 5, Fig. 5). Nevertheless, 457 
attention has to be paid to outliers when such a small calibration sample size is used. Moreover, some 458 
variation of plant density in the field, which covers a range of possible values, is needed to adequately 459 
train a user-based empirical regression model. The required time to manually count the plants in an 460 
area of one square meter with a sowing density of 460 seeds m−2 is approximately 5 minutes. 461 
In summary, the prediction accuracy of the transferred regression model (Fig. 5a) was closely related 462 
to the user-based calibrated model (Fig. 5b-e), although the experiments differed by season, soil color, 463 
genotypes and sowing density. Therefore, we assumed that user-based calibration is not necessary 464 
as long as the conditions are comparable, such as seed row spacing, the spatial resolution of the UAV 465 
data and the illumination conditions during data acquisition. In this respect, it is important to note 466 
that the empirical regression model was calibrated and transferred with data acquired under overcast 467 
conditions. Hence, the transferability of the model was not affected by the position of the sun. It is 468 
important to note that a calibrated model should be transferred to data with comparable illumination 469 
conditions. This is an important prerequisite for the transferability of empirical regression models 470 
[61]. Therefore, we recommend that data should be primarily acquired under overcast conditions or 471 
as an alternative timely close to solar noon to enable high transferability of the calibrated model. 472 
Under direct sunlight, data acquisition around solar noon conditions has the benefit of minimizing 473 
shadow effects and enabling comparable illumination conditions between datasets. 474 

The investigation of repeatability focused on wheat with predominantly planophile leaves, 475 
higher regression error metrics and high sowing density of up to 500 plants m−2 to demonstrate the 476 
transferability and robustness of the calibrated regression model. The prediction capability in this 477 
study was not negatively affected at early leaf developmental stages by high sowing densities of up 478 
to 500 plants with a higher probability of overlapping leaves [21, 42, 43]. However, a weed-free crop 479 
stand is required to achieve a sufficient prediction accuracy, since weeds have a negative impact on 480 
the assessment of fractional cover. Furthermore, local soil heterogeneities or sowing failures need to 481 
be identified and subsequently considered to enable a successful differentiation between different 482 
varieties based on sowing density. 483 

5. Conclusions 484 
The study presents a novel way to assess the plant density of cereal crops with high-throughput UAV 485 
image data. The determination of fractional cover for plant density assessment takes advantage of 486 
the fact that the average plant size is relatively stable and the number of overlapping plants is rela-487 
tively low at early leaf developmental stages. BBCH stage 13 was identified as the ideal growth stage 488 
when the plants were large enough to detect the fractional cover accurately even with lower GSDs in 489 
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this study. Nevertheless, with appropriate parameters such as a high GSD for BBCH stage 12, the 490 
specific growth stage was not critical for UAV based plant density assessment. 491 
The calibrated models proved to be robust with respect to unknown sites with comparable conditions 492 
such as seed row spacing, spatial resolution and illumination conditions. Across a data set of 42 gen-493 
otypes, it was shown that genotypic model adaptation is not necessary. It is only essential to distin-494 
guish between planophile and erectophile cereals in the application and process of empirical regres-495 
sion models. Better results were observed when multispectral data were used for plant density quan-496 
tification, in particular for planophile cereals. However, also RGB data provided comparable model 497 
performance and was sufficient for plant density assessment. 498 
The results stressed the transferability, practicability and repeatability of the developed methodol-499 
ogy. With conditions comparable to the presented study, the operator can choose whether to apply 500 
the trained regression model without re-calibration or whether to perform a user-based approach 501 
with a small number of field measurements. Furthermore, also a broader application of the method 502 
is conceivable, e.g. for other cereals with heterogeneous germination and overlapping leaves such as 503 
oats or triticale. In contrast to machine-learning approaches, expert guidance in feature extraction 504 
and large training datasets are not necessary. 505 
The developed methodology facilitates high-throughput plant density assessment of cereal crops for 506 
decision-making in precision farming and breeding. Breeding trials are particularly difficult to mon-507 
itor within a reasonable time, resulting in an increasing need for faster selection of superior lines. In 508 
addition, considering the plant density variation caused, for example, by different soil or nutrition 509 
conditions, can increase farmer’s crop production and yield estimations. 510 
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