000894582 001__ 894582
000894582 005__ 20240712113122.0
000894582 0247_ $$2doi$$a10.1002/anie.202107252
000894582 0247_ $$2ISSN$$a0570-0833
000894582 0247_ $$2ISSN$$a1433-7851
000894582 0247_ $$2ISSN$$a1521-3773
000894582 0247_ $$2Handle$$a2128/28793
000894582 0247_ $$2altmetric$$aaltmetric:111700944
000894582 0247_ $$2pmid$$apmid:34379346
000894582 0247_ $$2WOS$$aWOS:000695022900001
000894582 037__ $$aFZJ-2021-03289
000894582 041__ $$aEnglish
000894582 082__ $$a540
000894582 1001_ $$0P:(DE-Juel1)174577$$aLi, Jie$$b0
000894582 245__ $$aStabilizing the solid‐electrolyte interphase with polyacrylamide for high‐voltage aqueous lithium‐ion batteries
000894582 260__ $$aWeinheim$$bWiley-VCH$$c2021
000894582 3367_ $$2DRIVER$$aarticle
000894582 3367_ $$2DataCite$$aOutput Types/Journal article
000894582 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645449219_27835
000894582 3367_ $$2BibTeX$$aARTICLE
000894582 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894582 3367_ $$00$$2EndNote$$aJournal Article
000894582 520__ $$aThe introduction of “water-in-salt” electrolyte (WiSE) concept opens a new horizon to aqueous electrochemistry that is benefited from the formation of a solid-electrolyte interphase (SEI). However, such SEI still faces multiple challenges, including dissolution, mechanical damaging, and incessant reforming, which result in poor cycling stability. Here, we report a polymeric additive, polyacrylamide (PAM) that effectively stabilizes the interphase in WiSE. With the addition of 5 molar % PAM to 21 mol kg-1 LiTFSI electrolyte, a LiMn2O4L-TiO2 full cell exhibits enhanced cycling stability with 86% capacity retention after 100 cycles at 1 C. The formation mechanism and evolution of PAM-assisted SEI was investigated using operando small angle neutron scattering and density functional theory (DFT) calculations, which reveal that PAM minimizes the presence of free water molecules at the anode/electrolyte interface, accelerates the TFSI- anion decomposition, and densifies the SEI.
000894582 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000894582 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894582 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000894582 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000894582 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000894582 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000894582 7001_ $$0P:(DE-Juel1)173731$$aHou, Xu$$b1
000894582 7001_ $$0P:(DE-Juel1)161485$$aWang, Rui$$b2
000894582 7001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b3$$eCorresponding author
000894582 7001_ $$0P:(DE-HGF)0$$aPollard, Travis P$$b4
000894582 7001_ $$0P:(DE-Juel1)176763$$aJu, Xiaokang$$b5
000894582 7001_ $$0P:(DE-HGF)0$$aDu, Leilei$$b6
000894582 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b7
000894582 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b8
000894582 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, Lester C.$$b9
000894582 7001_ $$0P:(DE-HGF)0$$aBorodin, Oleg$$b10
000894582 7001_ $$0P:(DE-HGF)0$$aXu, Kang$$b11
000894582 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b12
000894582 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202107252$$gp. anie.202107252$$n42$$p22812-22817$$tAngewandte Chemie / International edition$$v60$$x1521-3773$$y2021
000894582 8564_ $$uhttps://juser.fz-juelich.de/record/894582/files/Angew%20chemie_Manuscript_WiSE-PAM-20210727.pdf$$yOpenAccess
000894582 8564_ $$uhttps://juser.fz-juelich.de/record/894582/files/Angew%20chemie_Manuscript_WiSE-PAM_supporting%20information0727.pdf$$yRestricted
000894582 8564_ $$uhttps://juser.fz-juelich.de/record/894582/files/anie.202107252.pdf$$yOpenAccess
000894582 909CO $$ooai:juser.fz-juelich.de:894582$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000894582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174577$$aForschungszentrum Jülich$$b0$$kFZJ
000894582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173731$$aForschungszentrum Jülich$$b1$$kFZJ
000894582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b8$$kFZJ
000894582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b12$$kFZJ
000894582 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000894582 9141_ $$y2021
000894582 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000894582 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000894582 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000894582 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894582 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000894582 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000894582 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894582 920__ $$lyes
000894582 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000894582 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
000894582 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000894582 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x3
000894582 9801_ $$aFullTexts
000894582 980__ $$ajournal
000894582 980__ $$aVDB
000894582 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000894582 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000894582 980__ $$aI:(DE-588b)4597118-3
000894582 980__ $$aI:(DE-Juel1)IEK-12-20141217
000894582 980__ $$aUNRESTRICTED
000894582 981__ $$aI:(DE-Juel1)IMD-4-20141217