000894590 001__ 894590
000894590 005__ 20230123110537.0
000894590 0247_ $$2doi$$a10.1007/s11682-021-00494-9
000894590 0247_ $$2ISSN$$a1931-7557
000894590 0247_ $$2ISSN$$a1931-7565
000894590 0247_ $$2Handle$$a2128/30700
000894590 0247_ $$2altmetric$$aaltmetric:110858731
000894590 0247_ $$2pmid$$apmid:34331655
000894590 0247_ $$2WOS$$aWOS:000679777400001
000894590 037__ $$aFZJ-2021-03297
000894590 082__ $$a150
000894590 1001_ $$0P:(DE-Juel1)190448$$aSaberi, Amin$$b0
000894590 245__ $$aStructural and functional neuroimaging of late-life depression: a coordinate-based meta-analysis
000894590 260__ $$aNew York, NY [u.a.]$$bSpringer$$c2022
000894590 3367_ $$2DRIVER$$aarticle
000894590 3367_ $$2DataCite$$aOutput Types/Journal article
000894590 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644929726_25416
000894590 3367_ $$2BibTeX$$aARTICLE
000894590 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894590 3367_ $$00$$2EndNote$$aJournal Article
000894590 520__ $$aSeveral neuroimaging studies have investigated localized aberrations in brain structure, function or connectivity in late-life depression, but the ensuing results are equivocal and often conflicting. Here, we provide a quantitative consolidation of neuroimaging in late-life depression using coordinate-based meta-analysis by searching multiple databases up to March 2020. Our search revealed 3252 unique records, among which we identified 32 eligible whole-brain neuroimaging publications comparing 674 patients with 568 controls. The peak coordinates of group comparisons between the patients and the controls were extracted and then analyzed using activation likelihood estimation method. Our sufficiently powered analysis on all the experiments, and more homogenous subsections of the data (patients > controls, controls > patients, and functional imaging experiments) revealed no significant convergent regional abnormality in late-life depression. This inconsistency might be due to clinical and biological heterogeneity of LLD, as well as experimental (e.g., choice of tasks, image modalities) and analytic flexibility (e.g., preprocessing and analytic parameters), and distributed patterns of neural abnormalities. Our findings highlight the importance of clinical/biological heterogeneity of late-life depression, in addition to the need for more reproducible research by using pre-registered and standardized protocols on more homogenous populations to identify potential consistent brain abnormalities in late-life depression.
000894590 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000894590 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894590 7001_ $$0P:(DE-HGF)0$$aMohammadi, Esmaeil$$b1
000894590 7001_ $$0P:(DE-HGF)0$$aZarei, Mojtaba$$b2
000894590 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3
000894590 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b4$$eCorresponding author
000894590 773__ $$0PERI:(DE-600)2377165-3$$a10.1007/s11682-021-00494-9$$p518–531 $$tBrain imaging and behavior$$v16$$x1931-7565$$y2022
000894590 8564_ $$uhttps://juser.fz-juelich.de/record/894590/files/Saberi2022_Article_StructuralAndFunctionalNeuroim.pdf
000894590 8564_ $$uhttps://juser.fz-juelich.de/record/894590/files/Saberi_2021_Postprint.pdf$$yOpenAccess
000894590 909CO $$ooai:juser.fz-juelich.de:894590$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190448$$aForschungszentrum Jülich$$b0$$kFZJ
000894590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000894590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b4$$kFZJ
000894590 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000894590 9141_ $$y2022
000894590 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000894590 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-27$$wger
000894590 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894590 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000894590 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000894590 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000894590 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000894590 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000894590 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-23
000894590 920__ $$lyes
000894590 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000894590 980__ $$ajournal
000894590 980__ $$aVDB
000894590 980__ $$aUNRESTRICTED
000894590 980__ $$aI:(DE-Juel1)INM-7-20090406
000894590 9801_ $$aFullTexts